
Chemistry 350

Organic Chemistry I

Report Book 2006-2008

Athabasca University

Athabasca University

Course team

CHEM350 Report Book Authors: Lawton Shaw, Robert D. Carmichael, and

Lois M. Browne

CHEM350 Report Book Illustrations: Aimee Caouette

Science Laboratory Technician: Elaine Goth-Birkigt

Course Professor: Dr. Lawton Shaw

Every effort has been taken to ensure that these materials comply with the requirements of copyright clearances and appropriate credits. Athabasca University will attempt to incorporate in future printings any corrections which are communicated to it.

The inclusion of any material in this publication is strictly in accord with the consents obtained and Athabasca University does not authorize or license any further reproduction or use without the consent of the copyright holder.

© Athabasca University 2000, 2004, 2006 All rights reserved Printed in Canada

CHEM 350 Report Book Contents

General Introduction	1
Report Book Structure Acknowledgements	3 4
Experiment 1 Melting-point determinations Pre-lab Questions Experiment 1 Lab Report	5 5 7-10
Experiment 2 Recrystallization Pre-lab Questions Experiment 2 Lab Report	11 11 13-17
Experiment 3 Distillation-simple and fractional Pre-lab Questions Experiment 3 Lab Report	18 18 20-24
Experiment 4 Refractive index Pre-lab Questions Experiment 4 Lab Report	25 25 26-30
Experiment 5 Extraction, separation, drying agents Pre-lab Questions Experiment 5 Lab Report	31 31 33-39
Experiment 6 The reactions of common functional groups and infrared spectroscopy tutorial Part 1: Hydrocarbons	40
Pre-lab Questions Experiment 6 Lab Report	40 41-51

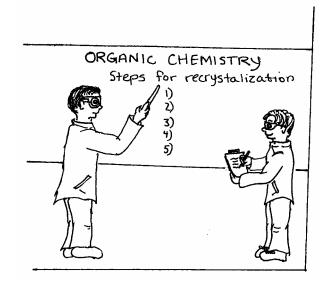
CHEM 350 Report Book Contents (cont.)

Experiment 7 Extraction of usnic acid Pre-lab Questions Experiment 7 Lab Report	52 52 53-57
Experiment 8 Prep. of cyclohexene from cyclohexanol	58
Pre-lab Questions	58
Experiment 8 Lab Report	60-65
Experiment 8 (Alternate) Prep. of methylpentenes	66
Pre-lab Questions	66
Experiment 8 Alternate Lab Report	68-76
Experiment 9 The nitration of acetanilide	77
Pre-lab Questions	77
Experiment 9 Lab Report	79-84
Table of Reagents	85

Welcome to Organic Chemistry 350's Laboratory Report Workbook

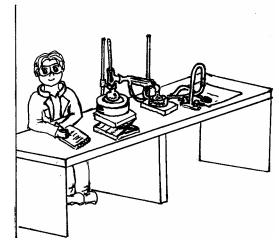
This report book, along with the 'Chemistry 350 Lab Manual', will help you prepare for a single weekend (~20h), or 3-4 days straight (~24-32h) of supervised lab instruction. All preparatory work in this report book (~12 h to finish, see list on page 3), may be completed and submitted to the Chemistry Lab Co-ordinator / Instructor prior to attending the labs, or just before the start of the Friday evening lab session.

In order to successfully complete the laboratory component, please be aware of the following 4 step process of instruction. It is the intention of this CHEM350 Report book to provide you with the means of completing all four steps.


Step 1: First we tell you what you are going to do.

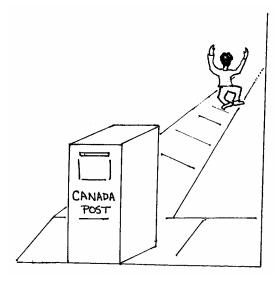
Find out by reading the lab manual, doing the pre-lab questions in this report book, and filling out the Table of Reagents etc., i.e., preparing for the labs at home. (By doing so you are able to work more efficiently in the lab and the over-all time spent in the supervised lab can be reduced to ~20 hours from the usually 32 hours.)

Step 2: Next we show you how to do it.


When you come to the lab, a lab instructor will give a safety orientation, followed by a series of mini lab lectures on each experiment. Various techniques will be demonstrated and you will be shown how to handle chemicals, dispose of hazardous waste, and operate the equipment.

Introduction

Step 3: Lab Time: Now you do what you've read, been told, and shown.


This is the time you spend in the lab performing your experiments, making your products, and recording your results in this report workbook.

Step 4: Finally, you tell us what you did.

This is the report writing stage. Actually most of your reports will have been written while in the lab. At home you will only have to do your calculations, write your discussion and conclusion and answer the questions at the end of each experiment.

Report Book Structure and How to Prepare for the Labs:

This CHEM350 Report Book is to used in conjunction with the CHEM350 Organic Chemistry I Lab Manual. It consists of an Introduction, Experiment Report Forms, Table of Reagents and a Course Evaluation. The reports are to be **completed one month** after of the lab session you attended. As a safety precaution, it is advisable to photocopy your reports before mailing them to your tutor for marking. Note: the marked reports are not returned to you.

How to best do the Report Book Exercises

- 1. First read through the lab manual introduction, and then answer the pre-lab questions for each experiment.
- 2. Complete the Objectives in the Experiment Report and begin to draft of your introduction.
- 3. Complete the Procedure (Refer to lab manual pages) and make a flowchart if necessary.
- 4. Complete the Table of Reagents for each experiment (detach a copy of the TOR to avoid flipping back and forth)
- 5. You are now ready to come to the lab and do the experimental work.

Note: Each experiment in the report book has the following headings:

Report Book Heading	Purpose and Use
1. Experiment Prelab Questions	Answer these questions to help you prepare and understand what you are doing in the lab. In order to answer these questions you will have to consult the CHEM350 Lab Manual, and to read the 'Introduction to Concept', and 'Background Information' sections of this manual.
	You may optionally submit these questions to the lab coordinator for review just before attending the lab.*
2. Objectives	Lists what you should learn from the lab. (see also lab manual). Use this information to fill in 'Objectives' in your Lab Write-up. When appropriate, write out any chemical reactions.
3. Introduction	Briefly state how the objectives of the experiment will be achieved and provide the relevant background information.
4. Procedure	Refer to the lab manual and only note any modifications or changes. Fill out the Table of Reagents**. Use the flowchart procedural step table to begin to record your work and observations.
The sections of your report shown below are completed session	l while doing the experiment, or at home after the lab
5. Results	While doing or immediately after your experiment, record your results in this section of the report.
6. Discussion an Conclusion	As soon after the lab as possible, discuss your results in light of the objectives, and make the appropriate conclusions. Remember to discuss sources of potential error and loss.
7. Post Lab Questions	Answer these questions to prove you understand what you did in the lab. To be completed after the experiment is finished. Submit your answers by mail along with your report and the Course Evaluation.

^{*}CHEM350 Prelab questions are also available online at: http://science.pc.athabascau.ca/chem350.nsf

^{**}CHEM350 Reagents are also available online at: http://science.pc.athabascau.ca/chem350.nsf

Acknowlegements:

The authors wish to thank Ms. Aimee Caouette for all the artwork. Athabasca University also wishes to thank Drs. K. Tanabe and T. Tamura and for all the IR Spectra used in this manual (pp. 65, 76, and 84). They were obtained from the SDBS web site: http://www.aist.go.jp/RIODB/SDBS/ (29-Sep-1999).

The following sources are also hereby acknowledged:

Laboratory Manual, Chemistry 320, Athabasca University, 1984.

Laboratory Manual, Chemistry 320, University of British Columbia, 1972-73.

Laboratory Manual, Chemistry 240, Dalhousie University, 1973.

Laboratory Manual, Chemistry 240A/B, Sir Wilfred Grenfell College, 1982-83.

Laboratory Manual, Chemistry 240, Memorial University of Newfoundland, 1976-77.

L.M. Browne, 1998. Laboratory Manual, Chemistry 161, University of Alberta.

L.M. Browne, 1998. Laboratory Manual, Chemistry 163, University of Alberta.

L.M. Browne, 1993. Laboratory Manual, Chemistry 361, University of Alberta.

Lehman, J.W. 1999. *Operation Organic Chemistry*: A Problem-Solving Approach to the Laboratory Course, 3rd ed., Prentice Hall, New Jersey.

Mayo, D.W., R.M. Pike, and S.S. Butcher. 1989. *Microscale Organic Laboratory*, 2nd ed., John Wiley and Sons, Toronto, pp.229-232.

McMurry, J., 1992. Organic Chemistry, 3rd ed., Brooks/Cole Publishing Company, Pacific Grove, CA.

Weast, R.C. et al. 1974. CRC Handbook of Chemistry and Physics, 65th ed., CRC Press, Inc., Boca Raton, FL.

Each experiment has been modified and rewritten, keeping the particular needs of Athabasca University students in mind. The procedures described in this manual have been checked in our Athabasca laboratories by Jerry Pyrozko, Roger Klemm, Glen Conlin, and Robert Carmichael. Special thanks to Ms. Aimee Caouette for her help on the IR Tutorial (Summer 1999). The comments and suggestions received from the individuals mentioned above were greatly appreciated by the Course Co-ordinator.

Chem350 Experiment 1 Report	Date:
Student Name:	ID Number:

Experiment 1 Prelab Questions:

- 1. Why do we need to know the melting point of a substance?
 - a. To determine the exact time it takes for a sample to melt, and what color the compound becomes after heating.
 - b. To determine the purity of a sample, 1-2 C range = pure, 3 C range or more = impure.
 - c. To identify and then determine the crystal lattice structure of a compound.
 - d. To identify the compound before using it in a reaction.
- 2. List the three steps used to prepare a melting point sample?
 - a. (1) Mix the solid well before sampling. (2) Transfer a small amount of powder to a melting point tube. (3) Pack the sample to a height ~1 mm.
 - b. (1) Transfer a small amount of powder to a melting point tube. (2) Pack the sample to a height ~1 mm. (3) Place the packed sample into the melting point apparatus and begin heating.
 - c. (1) Crush the solid using a mortar and pestle. (2) Transfer a small amount of powder to a melting point tube. (3) Pack the sample to a height ~1 mm.
 - d. (1) Crush the solid in a mortar. (2) Transfer a large amount of powder to a melting point tube. (3) Only pack the sample if the melting point tube is too full.
- 3. What are three main concerns regarding mercury filled melting point thermometers?
 - a. Accuracy, precision, and fragility.
 - b. Room temperature readings, accuracy, and spilt mercury disposal.
 - c. Use for only mp determinations, they must be calibrated, and never heat above 250 C.
 - d. Emergent stem error, paralax, and difficulty in finding a cheap supplier.
- 4. Define the temperatures recorded at the beginning and end of the melting point range.
 - a. lower and upper limits of the melting point range.
 - b. lower limit = when the first drop of liquid is seen; upper limit = when the sample is completely liquid.
 - c. lower limit = when the sample is completely liquid; upper limit = when the sample has evaporated from the melting point tube.
 - d. lower limit = when the sample begins to shrink/shrivel; upper limit = when the sample is completely liquid.
- 5. The CRC Handbook of Chemistry and Physics sometimes reports the melting point of a compound as a single number. What does this mean?
 - a. It's the midpoint value between the upper and lower limit of the melting point range.
 - b. It's the lower limit of the melting point range.
 - c. It's the upper limit of the melting point range.
 - d. It's the upper limit for the melting point range, corrected for barometric pressure effects.

- 6. The melting point apparatus should be heating at what rate (? C/min) as it approaches the melting point of the compound?
 - a. The maximum rate of heating. Use the boost switch.
 - b. 3
 - c. 2
 - d. 1
- 7. What is the name of the piece of laboratory equipment on the right?
 - a. melting point apparatus
 - b. pan balance
 - c. spectrophotometer
 - d. pH meter

- 8. The identification of a unknown solid will be achieved by mixed melting point determination.
 - a. True
 - b. False

Experiment 1 - Lab Safety

- 9. 'WHMIS' stand for?
 - a. Workplace Hazardous Materials Information and Symbols
 - b. Worker Hazardous Materials Information System
 - c. Workplace Hazardous Materials Information System
 - d. Worker Hazardous Materials Information Sheets
- 10. 'MSDS' stand for?
 - a. Most Severe Data Sheet
 - b. Material Sheet for Dangerous Supplies
 - c. Material Safety Danger Sheet
 - d. Material Safety Data Sheet

Chem350 Experiment 1 Report	Date:	
Student Name:	ID Number:	
<u>Title:</u>		
Objective(s):		

<u>Introduction:</u> (definition and importance of mp, how one assesses purity using mp, mixed mp for ID, etc.)

Procedure: Ref. format: (author/surname, initials/, date. Title, publisher, page numbers)

Part A: Single melting point determination of unknown sample

	Procedural Step	Observations
1.	Record unknown code number	
2.	Record approximate melting point of the unknown	
3.	Prepare melting point tube i) Crush the sample using a mortar and pestle before loading the melting-point tube ii) iii)	
4.	Place tube in mp apparatus and heat sample	
5.	Record your experimentally determined melting point.	

Procedure (cont.):

Part B: Mixed melting point determination of an unknown sample

Tart B. White merting point determination of an unknown sample			
Procedural Step	Observations		
1. Record unknown code number and suggested candidates			
2. Literature Values of Unknown candidates			
3. Prepare melting point tubes			
Crush the sample using a mortar and pestle before loading the melting-point tube			
5. Record your experimentally determined melting point.			

Table of Reagents for Exp. 1

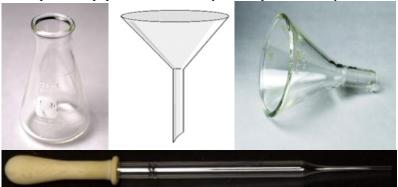
Reagent	Formula	Mwt. (g/mol)	mp (°C)	bp (°C)	Hazardous Properties
benzoic acid	C ₆ H ₅ COOH				Irritant
3-chlorobenzoic	ClC ₆ H ₄ COOH				Irritant
biphenyl	$C_6H_5C_6H_5$				Irritant
salicylic acid	HOC ₆ H ₄ COOH				Toxic, Irritant
trans-cinnamic acid					Irritant
2-methylbenzoic	CH ₃ C ₆ H ₅ COOH				Irritant
4-nitrobenzaldehyde					Irritant
urea	NH ₂ CONH ₂	60.06	133-135		Irritant
acetone (wash)	CH ₃ COCH ₃			56.5	Flammable, Irritant

D	ΔCII	ılts	
K	esu	IIUS	

Results:				
Part A				
Melting point of sample #	=			
Part B Possible identity of unknown co	mpound #:			
1	; mp	(Reference:)
2.	; mp	(Reference:)
Melting point of unknown comp	ound #	=		
Melting point obtained when un	known compound#_	is mixed w	ith	
1		_=	_ (report range)	
2		_=	_ (report range)	
Conclusion:				
(concluding statement, objective	es achieved?)			
The above results indicate that u	nknown compound #		Structure of U	 Ink #
	_		Structure of C	π
is probably (The structure of unknown				

Experiment 1 Post Lab Questions:

Answers to these post lab questions must be submitted with your laboratory report.


1.	In the lab manual introduction to this experiment, you were warned that heating the sample too quickly in the region of the melting point would result in the experimentally determined melting point being higher than the true value. Explain why this is so.
2.	What is an eutectic mixture? How would you decide whether a given sample was a pure compound or an eutectic mixture of two compounds?
3.	You are working in the lab, and you find an unlabelled vial with a white crystalline solid inside. In order to determine the identity of the compound, what would you have to do?
4.	i) Give two reasons why you should calibrate your thermometer before using it of a melting point determination.
	ii) How do you properly 'cool off' a melting point thermometer?

Chem350 Experiment 2 Report	Date:	
Student Name:	ID Number:	

Experiment 2 Prelab Questions:

- 1. Why does a chemist recrystallize an organic compound?
 - a. To determine the solubility of the compound in a particular solvent.
 - b. To convert the compound into a eutectic mixture.
 - c. To identify the compound.
 - d. To purify a compound prior to analysis or use in a reaction.
- 2. Which statement briefly explains how recrystallization increases the purity of a compound?
 - a. Recrystallization is an art and it is by luck you get any pure crystals at all.
 - b. Assuming that impurities are highly soluble in the selected solvent at all temperatures, by dissolving the desired impure compound in a minimum of hot solvent, and then cooling the solution, brand new crystals form while the impurities stay in solution, resulting in purer than original crystals.
 - c. By dissolving the compound in hot solvent and then cooling the solution, brand new crystals form which are purer than the original crystals.
 - d. Assuming that impurities are only highly soluble in the hot solvent, by dissolving the desired impure compound in a minimum of hot solvent, and then cooling the solution, brand new crystals form while the impurities stay in solution, resulting in purer than original crystals.
- 3. The following are the 5 steps of the recrystallization procedure:
 - i. Select the recrystallation solvent.
 - ii. Dissolve the crude solid in a minimum amount of hot solvent (= saturated solution).
 - iii. Make a decision to hot gravity filter or not.
 - iv. Slow cool and allow the crystals to form.
 - v. Collect the crystals using vacuum filtration and wash with ice cold recrystallization solvent, and then allow the crystals to dry to a constant weight.
 - a. True
 - b. False
- 4. What are the criteria for selecting a solvent suitable for a single solvent recrystallization?
 - a. soluble in hot solvent and soluble in cold solvent.
 - b. insoluble in hot solvent and insoluble in cold solvent.
 - c. insoluble in hot solvent and soluble in cold solvent.
 - d. soluble in hot solvent and insoluble in cold solvent.
- 5. Boiling stones must be added to the recrystallization solvent prior to heating. Why (Note: there are two very good reasons for doing so)?
 - a. In order to prevent the solution from 'bumping' in the first place.
 - b. To avoid a sudden violent eruption of liquid should the solution be hot when the stones are added.
 - c. a and b are correct.
 - d. none of the above.
- 6. What are two situations where you are required to perform a hot gravity filtration.

- a. colored impurities are present (therefore charcoal was added), and to remove soluble impurities.
- b. soluble impurities are present (therefore charcoal was added), and to remove insoluble impurities.
- c. colored impurities are present (therefore charcoal was added), and to remove insoluble impurities.
- d. to remove boiling stones that were added, and to remove soluble impurities.
- 7. Which piece of equipment is not normally used to perform a recrystallization:

- a. Erlenmeyer flask
- b. Long narrow stemmed glass funnel
- c. Short stemmed wide mouthed glass funnel
- d. Pasteur pipette
- 8. If too much solvent is used when making a saturated solution, the yield of crystals at the end of the recrystallization will be reduced.
 - a. True
 - b. False

Experiment 2 - Lab Safety

- 9. Which of the four following statements is false?
 - a. Never heat a flammable solvent directly on a hot plate.
 - b. Never heat an Erlenmeyer flask filled more than 2/3rds full of liquid.
 - c. Always remember to use boiling stones when heating a solvent.
 - d. Acetanilide waste can be washed down the sink drain.
- 10. If you are unable to find any hazardous properties for a compound in the literature, you should
 - a. leave the Hazardous Properties column blank in the Table of Reagents in your CHEM350 Report Book.
 - b. assume the organic compound is safe; it has no hazardous properties.
 - c. assume that the organic compound is at least a 'suspected irritant'.
- 11. Acetanilide waste should be placed into the
 - a. General Organic Waste bottle in the fumehood.
 - b. Halogenated Organic Waste bottle in the fumehood.
 - c. Flushed down the drain with water.

CHEM350	Report	Rook	2006-	.08
CHILIMISSU	KCPOIL	\mathbf{n}	∠ 000-	·vo

Introduction:

Exp.2

Date:
ID Number:

$\frac{\textbf{Procedure:}}{(\text{Ref: })}$

Single Solvent recrystallization of impure acetanilide

Procedural Step	Observations
Record appearance and amount of impure acetanilide weighed.	
Single Solvent Recrystallization Procedure (record appearance of solvent throughout and note any volume changes. Record elapsed time)	
1. Select the solvent.	
2 Heat volume of solvent to its bp.	
3.	
4.	
5.	
Final Analyses	

Table 1. Table of Reagents for Exp. 2

Reagent	Formula	Mwt. (g/mol)	mp (°C)	bp (°C)	Hazardous Properties
acetanilide				NA	
sucrose	$C_{12}H_{22}O_{11}$			NA	
calcium carbonate	CaCO ₃			NA	
silica	SiO ₂			NA	
charcoal				NA	
water	H ₂ O		0	100	Burns when hot
acetone (wash)	CH ₃ COCH ₃			56.5	Flammable liquid, irritant

NA= not applicable.

Experiment 2 Results:

Table 2. Table of Observations:

Procedural Step	Comment or Observation
Recrystallization solvent used:	
Volume of recrystallization solvent used:	
Appearance of solution after addition of charcoal	
Time allowed for crystals to form:	

Table 3. Table of Product Recrystallization Results

	Mass of Impure Acetanilide (g)	Mass of Pure Acetanilide Recovered (g)	Appearance of Crystals	% Recovery Yield	Melting Point (°C)
Impure acetanilide					
'Pure' acetanilide					
2 nd crop 'Pure' acetanilide					

[%] recovery yield calculation:

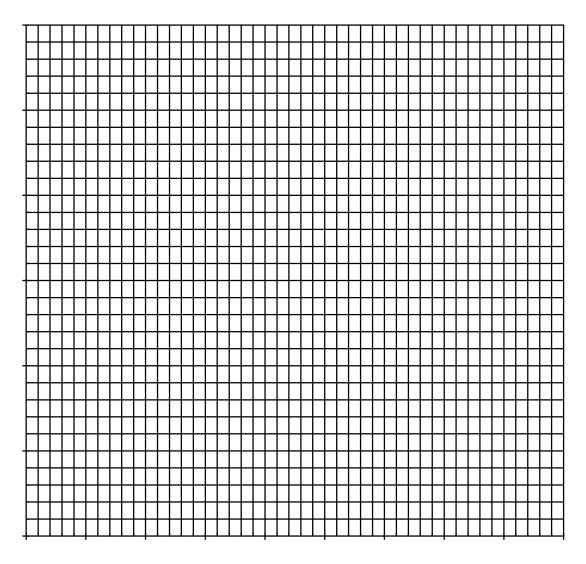
Discussion:

Comments on and reasons for yield (high or low), and sources of error:

Conclusion:

Structure of Product

Experiment 2 Post Lab Questions:


Answers to these post lab questions should be submitted with your report.

1. The table below shows the solubility of a certain organic compound in water at five different temperatures.

Temperature (°C)	Solubility of compound (in 100 mL of water)
0	1.5 g
20	3.0 g
40	6.5 g
60	11.0 g
80	17.0 g

- a) Plot a graph of the solubility of the compound versus temperature. Draw a smooth curve through the data points.
- b) If a student attempts to recrystallize a 0.5 g sample of this compound by heating it to 80° C with 5.0 mL of water, would all of the sample dissolve? Briefly justify your answer.
- c) Assuming that the answer to part b is 'Yes', at what temperature will the crystals begin to appear when the student's solution begins to cool?
- d) If the student cooled the solution to 0° C and filtered off the crystals, what is the maximum possible percentage recovery? What mass of the sample will remain in the filtrate?
- 2. Explain why you should slowly cool the filtered saturated solution obtained in step 3 of the recrystallization procedure?
- 3. During the last step of the recrystallization procedure, you collect the crystals by vacuum filtration. Why do you use ice cold recrystallization solvent to help transfer all the crystals to the Büchner funnel and wash the crystals?
- 4. Briefly explain the circumstances under which a mixed solvent recrystallization method would be used to recrystallize a given compound.

Graph paper insert

Chem350 Experiment 3 Report	Date:		
Student Name:	ID Number:		

Experiment 3 Prelab Questions:

- 1. Why does a chemist distil an organic liquid?
 - a. To determine the polarity of a particular solvent.
 - b. To purify a compound prior to analysis or use in a reaction.
 - c. To identify the compound.
 - d. To convert the compound into its vapour form.
- 2. Which statement best explains how distillation purifies a compound?
 - a. Distillation is used to concentrate a desired compound by removing undesired impurity vapours.
 - b. Assuming that the impurity has a higher boiling point (must be greater than 25-30 °C different than the solvent), the desired solvent can be separated by heating it to its vapour phase and then collecting the pure vapours in a receiver flask.
 - c. Distillation involves heating a liquid to its boiling point, at atmospheric or reduced pressure, to convert it to its vapour, and then condensing the vapour back into a liquid by cooling with a condensor.
 - d. Distillation involves heating a liquid to its boiling point to convert it to its vapour, and then condensing the vapour back to liquid by icing the receiver flask.
- 3. The various heat sources available for a distillation, and when it is appropriate to use each heat source are:
 - i. Bunsen burner (used only for aqueous non-flammable high boiling point (bp) solvents).
 - ii. heating mantle (can be used for flammable solvents with bp up to 150 C).
 - iii. steam bath (can be used for flammable solvents up to 85 C)
 - iv. hot plate plus flat bottom dish/water bath (for low bp flammable solvents
 - a. True
 - b. False
- 4. Boiling stones must be added to the distillation flask prior to heating. Why?
 - a. In order to prevent the solution from 'bumping'.
 - b. To avoid a sudden violent eruption of liquid should the solution already be hot when the stones are added.
 - c. To promote smooth boiling of the solvent.
 - d. all of the above.
- 5. Which is the name of the piece of glassware on the right?
 - a. Claisen adaptor
 - b. three way connector or still head
 - c. vacuum take off adaptor
 - d. thermometer adaptor

- 6. Simple distillations can be performed on a mixture of two solvents only if the boiling points are different by more than 25-30 C. Fractional distillations are performed on a mixture of two solvents if the boiling points are different by less than 25-30 C.
 - a. True
 - b. False

Experiment 3 Lab Safety

- 7. Which of the four following statements is false?
 - a. Never heat a distillation flask to dryness.
 - b. Never heat a round bottom flask filled more than 1/2 full of liquid.
 - c. Always remember to use boiling stones when heating a solvent.
 - d. Ensure you have a open system before you begin heating.
 - e. Once your distillation apparatus is fully assembled, then insert your thermometer down through the thermometer adapter.
- 8. When setting up the condensor, adjust the cooling water flow so that:
 - a. it flows in the bottom and out the top of the condensor, at a maximum flow rate.
 - b. it flows in the top and out the bottom of the condensor, at a maximum flow rate.
 - c. it flows in the bottom and out the top of the condensor, at a minimum flow rate.

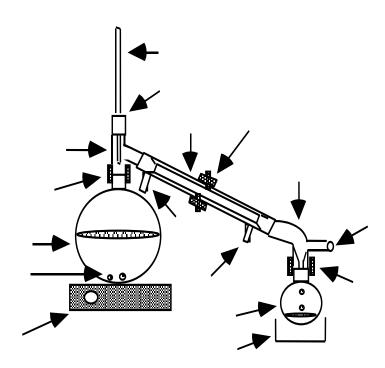
Chem350 Experiment 3 Report	Date:
Student Name:	ID Number:
<u>Title:</u>	
Objective(s):	
Introduction:	

$\frac{\textbf{Procedure:}}{(\text{Ref: })}$

Changes/Modification:

Part A: Distillation of impure cyclohexanol

Procedural Step	Observations
3. Record amount of impure cyclohexanol used.	
Distillation Procedure	
1.	
2.	
3.	
4.	
5.	
6.	
0.	
Volume of Forerun	
Boiling point range of forerun	
Barometric Pressure	
Boiling point of product	


Part B: Fractional distillation of 50:50 mixture of cyclohexane:toluene.

	Procedural Step				Observations	
1. Recor		and	amount	of	50:50	
Fractional	Distillation Procedu	re				
1.						
2						
2.						
3.						
4.						
5.						
6.						

Table 1. Table of Reagents for Exp. 3

Reagent	Formula	Mwt. (g/mol)	mp (°C)	bp (°C)	Hazardous Properties
cyclohexanol					
toluene					
cyclohexane					
acetone (wash)	CH ₃ COCH ₃			56.5	Flammable liq., irritant

Sketch for the assembly of a simple distillation apparatus (fill in labels).

Labels to place on sketch:

distillation flask condensor
receiving flask water in
heating mantle water out
boiling stones ice bath
thermometer clamps (3)
three-way connector (still head) vacuum adapter
thermometer adapter 'open to air'

Experiment 3 Results:

Table 2. Table of Observations:

Procedural Step	Comment or Observation			

Table 3. Part A Table of Product Simple Distillation Results

	Volume (mL)	Appearance of Liquid	% Recovery Yield	Boiling Range (°C)/Pressure	Press. Corrected Boiling Range(°C)
Impure Cyclohexanol					
Forerun					
'Pure' cyclohexanol					

Table 4. Part B Table of Product Fractional Distillation Results

	Volume (mL)	Appearance of Liquid	% Recovery Yield	Boiling Range (°C)/Pressure	Press. Corrected
	(IIIL)	Liquid	1 iciu	(C)/Pressure	Boiling Range(°C)
50:50					
cyclohexane:toluene					
Forerun					
Fraction 1					
Fraction 2					
Fraction 3					

<u>Discussion:</u>
Comments on and reasons for yield (high or low), sources of error (uncalibrated thermometer, atmospheric pressure effects):

~ 1	
Conc	lusion:
Conc	iusivii.

Structure of Products						

Experiment 3 Post Lab Questions:

Answers to these post lab questions should be submitted with your report.

1. A student who was performing a distillation for the first time failed to position the thermometer correctly. The bulb was set too high. What effect would this have on the observed boiling point of the liquid being distilled?

2. Under perfect conditions, the number of theoretical plates required to separate an ideal mixture of two components of boiling points T_A and T_B is given by the relationship:

Number of theoretical plates needed =
$$\frac{120}{T_A - T_B}$$

On this basis, how many theoretical plates are needed to separate a mixture of cyclohexane and toluene? (Note: In practice, the actual number of theoretical plates required may be as high as double the number predicted by this equation!)

- 3. You suddenly notice you have forgotten to add boiling stones to your round bottomed distillation flask but the distillation is now in progress. What should you do?
- 4. What is the purpose of the condensor during a distillation?

Chem350 Experiment 4 Report Date:______ Student Name:______ ID Number:______

Experiment 4 Prelab Questions

- 1. The two common ways to assess the purity of a liquid organic sample are:
 - a. thin layer chromatography, and determine its refractive index.
 - b. distil the liquid and determine its density by determining the mass and volume of product.
 - c. convert the compound into its vapour form and condense it back to a liquid.
 - d. fractional distillation of the liquid, followed by refractive index analysis.
- 2. The refractive index of a liquid is fundamentally based on the change of the speed of
 - a. flowing water.
 - b. gaseous molecules.
 - c. light.
- 3. The refractive index is dependent upon which two key factors?
 - a. temperature of the sample and the wavelength of the incident light.
 - b. the operator of the refractometer and the amount of sample used.
 - c. density of the sample and the wavelength of the incident light.
- 4. Which of the following sequences describes the correct order of the steps needed to measure a refractive index?
 - a. Turn on refractometer, apply sample, adjust side hand wheel, adjust thumb wheel for chromatic aberration, readjust side hand wheel, read meter.
 - b. Turn on refractometer, apply sample, adjust thumb wheel for chromatic aberration, adjust side hand wheel, readjust side hand wheel, read meter.
 - c. Turn on refractometer, adjust thumb wheel for chromatic aberration, adjust side hand wheel, apply sample, read meter
 - d. All of the above (the order does not matter).
- 5. From the formulae provided below, choose the one which describes the correct method to calculate the percentage error in a refractive index measurement.
 - a) = $\frac{|\text{ actual value theoretical value}|}{\text{theoretical value}} \times 100\% =$
 - b) = $\frac{\text{actual value}}{\text{theoretical value}} \times 100\% =$
 - c) = $\frac{|\text{theoretical value actual value}|}{\text{actual value}} \times 100\% =$

Experiment 4 Lab Safety

- 6. What is the major safety concern regarding this experiment?
 - a) Handling flammable and toxic solvents.
 - b) the sodium lamp in the refractometer.
 - c) disposal of waste sample.
 - d) the temperature of the sample during refractometer readings.

Chem350 Experiment 4 Report	Date:
Student Name:	ID Number:
<u>Title:</u>	
Objective(s):	
Introduction:	

Exp.4

Procedure: (Ref:)

Changes/Modification:

Part A: Refractive index (n) of cyclohexanol

	Procedural Step	Observations		
Table 4.	Record <i>n</i> of purified cyclohexanol.			
2. Record n	of starting impure cyclohexanol (optional)			

Part B: Refractive Index (*n*) of fraction/mixtures of cyclohexane:toluene.

Procedural Step	Observations
2. Record <i>n</i> of fractionated cyclohexane:toluene mixtures.	

Table 1. Table of Reagents for Exp. 4

Reagent	Formula	Mwt. (g/mol)	mp (°C)	bp (°C)	Hazardous Properties
cylcohexanol					
toluene					
cyclohexane					
acetone (wash)	CH ₃ COCH ₃			56.5	Flammable liq., irritant

Experiment 4 Results:

Table 2. Part A Table of Product Simple Distillation Results

	Observed n _D	Temperature (°C)	Corrected n _D ²⁰	% Error n Cyclohexanol
Impure Cyclohexanol				
'Pure' cyclohexanol				

^{*}Literature Value of cyclohexanol n_D^{20} =

Table 3. Part B Table of Refractive Index (n) of Fractional Distillation Samples

	Observed	Temperature	Corrected	% Error
	n_{D}	(°C)	${ m n_D}^{20}$	
50:50 Cyclohexane:Toluene	_			
Fraction 1				
Fraction 2				
Fraction 3				

^{*}Literature Value of cyclohexane $n_{\rm D}^{20}$ = *Literature Value of toluene $n_{\rm D}^{20}$ =

Table 4. Part B Table of Product Fractional Distillation Results

	Mol% Cyclohexane	Mol% Toluene
50:50 Cyclohexane:Toluene		
Fraction 1		
Fraction 2		
Fraction 3		

Calculation of the percent mole fractions:

Discussion:Comments on and reasons for high or low readings, %error, mole fraction results, assessment of the efficiency of the separation achieved in your fractional distillation, and sources of error:

Conclusion:

Experiment 4 Post Lab Questions:

Answers are to be included with your report.

- 1. Look up the boiling points of cyclohexanol, cyclohexane and toluene in a suitable reference book and report your findings. Don't forget that when you quote a boiling point, melting point, or similar physical property you should always cite the source. Example:
 - 1,3-Butadiene; b.p. = 44 °C (*Handbook of Chemistry and Physics*, 47th ed. Cleveland, Ohio: The Chemical Rubber Co., 1966)
- 2. Suggest a reason why the boiling point of cyclohexanol is so much higher than those of cyclohexane and toluene.
- 3. Suggest a reason why the refractive index of cyclohexanol is higher than that of water.
- 4. To reduce the percentage error in the n_D reading of your purified cyclohexanol (compared to the literature value), what should you do?

Chem350 Experiment 5 Report Date:_____

Student Name:	ID #:
	

Experiment 5 Prelab Questions:

- 1. What is the easiest way to separate two immiscible liquids?
 - a. use a ultracentrifuge.
 - b. use a Büchner funnel.
 - c. use a separatory funnel.
- 2. Fifty milliters of 5% sodium hydroxide and dichloromethane were added to a separatory funnel. What would you observe?
 - a. a homogeneous, clear, and colourless solution.
 - b. two layers of liquid, both clear and colourless.
 - c. two layers of liquid, fizzing, and the separatory funnel would have to be immediately vented.
- 3. Given $K = ([solute] \text{ in solvent A, g . L}^{-1}) / ([solute] \text{ in solvent B, g . L}^{-1})$ The distribution coefficient for a compound in a two solvent extraction system is 2.0. If you are given 4.0 g of compound dissolved in 100 mL of solvent B, is the following the correct answer for how much compound will be extracted, if you use 50 mL of solvent A for the extraction.

$$K = 2.0 = \frac{(x/0.05L)}{(4-x)/0.1L}, \text{ rearrange to solve for } x, = \frac{(8-2x)}{0.1L} = \frac{x}{0.05L} \text{ or } 0.1 \text{ x} = 0.05 \text{ (8-2x)}, \text{ therefore, } 0.2x = 0.4 \text{ or } x = 2g$$

- a. Yes
- b. No
- 4. Why do we add 5% NaOH to extract the organic acid from the organic mixture?
 - a. The strong, aqueous, inorganic base (NaOH) will react with the organic acid and convert the organic acid to its water insoluble, salt form (R-COO-Na+).
 - b. The strong, aqueous, inorganic base (NaOH) will react with the organic acid and convert the organic acid to its water soluble, salt form (R-COO-Na+).
 - c. The weak, aqueous, inorganic base (NaOH) will not react with the organic acid and not convert the organic acid to its water soluble, salt form (R-COOH + NaOH --- no reaction).
- 5. Why do we add 1.5 M HCl to extract the organic base from the organic mixture?
 - a. The strong, aqueous, inorganic acid (HCl) will react with the organic base and convert the organic base to its water insoluble, salt form (R-NH3+Cl-).
 - b. The strong, aqueous, inorganic acid (HCl) will react with the organic base and convert the organic base to its water soluble, salt form (R-NH3+Cl-).
 - c. The weak, aqueous, inorganic acid (HCl) will not react with the organic base and not convert the organic base to its water soluble, salt form (R-NH2 + HCl --- no reaction).

- 6. Why do we add concentrated hydrochloric acid (6 or 12 M) to the separated, aqueous salt of the organic acid (R-COO $^{-}$ Na $^{+}$ (aq) + HCl(aq) \rightarrow ?).
 - a. The strong, concentrated, aqueous, inorganic acid (6 or 12 M HCl) will react with the salt of the organic acid, and reconvert it to its water insoluble, salt form (R-COO H⁺).
 - b. The strong, concentrated, aqueous, inorganic acid (6 or 12 M HCl) will lower the pH of the organic salt solution, but will not react with the organic acid salt.
 - c. The strong, concentrated, aqueous, inorganic acid (6 or 12 M HCl) will react with the salt of the organic acid, and reconvert it to its water insoluble form (R-COOH).
- 7. Why do we add concentrated sodium hydroxide (6 M) to the separated, aqueous salt of the organic base (R-NH3⁺Cl⁻).
 - a. The strong, concentrated, aqueous, inorganic base (6M NaOH) will react with the salt of the organic base, and reconvert it to its water insoluble, salt form (R-NH2⁺ Cl⁻).
 - b. The strong, concentrated, aqueous, inorganic base (6M NaOH) will raise the pH of the organic salt solution, but will not react with the organic base salt.
 - c. The strong, concentrated, aqueous, inorganic base (6M NaOH) will react with the salt of the organic base, and reconvert it to its water insoluble form (R-NH2).

Experiment 5 Lab Safety

- 8. What is/are the safety concern(s) regarding this experiment?
 - a) A leaking separatory funnel.
 - b) dichloromethane is toxic and readily absorbed through the skin.
 - c) hot glassware during the recrystallizations.
 - d) all the above.

Chem350 Experiment 5 Report	Date:
Student Name:	ID Number:
<u>Title:</u>	
Objective(s):	

Introduction:

General Reaction Equations:

Reaction 1: Reaction of Organic acid with dilute sodium hydroxide:

Reaction 2: Reaction of Organic base with dilute hydrochloric acid:

Reaction 3: Reaction of the salt of the organic acid with strong acid:

Reaction 4: Reaction of the salt of the organic base with strong base:

Procedure:

(Ref:)

Changes/Modification:

Part A: Extraction of the organic acid through salt formation.

Procedural Step	Observations
Record Unknown Code:	

Part B: Extraction of the organic base through salt formation.

Procedural Step	Observations

Part C: Recovery of the organic acid from its salt.

Procedural Step	Observations

Sample Calculation of volume of 12 M HCl to add:

Part D: Recovery of the organic base from its salt.

Procedural Step	Observations

Sample Calculation of volume of 6 M NaOH to add:

Table 1. Table of Reagents for Exp. 5

Reagent	Formula	Mwt. (g/mol)	mp (°C)	bp (°C)	Hazardous Properties
dichloromethane					
benzoic acid	C ₆ H ₅ COOH				
2-methylbenzoic acid					
4-methylbenzoic acid					
4-chlorobenzoic acid					
salicylic acid					
3-nitroaniline					
4-chloroaniline					
naphthalene					
5% NaOH	NaOH				
1.5 M HCl	HCl				
12 M HCl (conc.)	HCl				
6 M NaOH	NaOH				
distilled water	H ₂ O				
methanol	CH ₃ OH				
ethanol	CH ₃ CH ₂ OH				
ethyl acetate					
hexanes					
acetone (wash)	CH ₃ COCH ₃			56.5	Flammable liq., irritant

Experiment 5 Results:

Table 2. Table Summarizing Observations:

Procedural Step	Comment or Observation

Table 3. Yield and Characterization of Unknown #_____

	Yield (g)	Appearance of Crystals	Melting Point (°C)	Tentative Identification of Unkown	Melting Point of Known* (°C)	Mixed Melting Point (°C)
Organic Acid					(0)	(0)
Organic Base						
Neutral Compound						

*Reference:	The Handbook of Chemistry a	and Physics, e	d.,	Cleveland,	Ohio,	The	Chemical	Rubber
Co								

Discussion:

Reaction equations with your identified unknowns. Comments on and reasons for yield (high or low), sources of error, etc.:

Conclusion:

Structure of Products			

Experiment 5 Post Lab Questions:

Answers to be submitted with report.

- 1. When extracting an organic compound from an aqueous solution into an organic solvent, e.g., diethyl ether, a chemist will sometimes add sodium chloride to the aqueous solution. What is the purpose of such an addition, and what is the procedure called?
- 2. Why is the procedure used in this experiment called liquid-liquid extraction?
- 3. A CHEM350 student was working on her yield determination of her recrystallized *p*-aminobenzoic acid, when some naphthalene was inadvertently spilt into her crystals. You happen along the scene, and offer the following advice to the distraught student:
 - a) Redissolve all the solid in dichloromethane, extract with dilute aqueous acid, re-isolate the organic compound by precipitating the salt of the base with strong base, and recrystallize your paminobenzoic acid again.
 - b) Redissolve all the solid in dichloromethane, extract with dilute aqueous base, re-isolate the organic compound by precipitating the salt of the acid with strong acid and recrystallize *p*-aminobenzoic acid again.
 - c) Do either a or b.
 - d) Discard everything into the hazardous waste container. Nothing can be done.
- 4. When an aqueous solution of an organic compound is shaken with an immiscible organic solvent, such as diethyl ether, the solute distributes itself between the two phases. When the two phases separate into two distinct layers, an equilibrium will have been established such that the ratio of the concentrations of the solute in each solvent defines a constant, K, called the distribution coefficient (or partition coefficient).
 - $K = \frac{\text{concentration of solute in solvent A, e.g., diethyl ether } (g \cdot L^{-1})}{\text{concentration of solute in solvent B, e.g., water } (g \cdot L^{-1})}$

The distribution coefficient for compound X in the diethyl ether/water system is 3.0. If you were given a solution containing 8.0 g of X in 500 mL of water, and wanted to extract compound X into diethyl ether, show that it would be more effective to extract X using three 50 mL aliquots of diethyl ether rather than a single 150 mL aliquot. (HINT: Determine how much of X would remain in the aqueous solution in each case.)

Ch	em350 Experiment 6 Report	Date:
Stu	dent Name:	ID Number:
Exp	periment 6 Prelab Questions	
1.	What does the Bromine Test detect? a. all types of unsaturation in a molecule. b. double bonds only. c. triple bonds only. d. differentiates between alkanes and molecules	with bond unsaturation.
2.	What does the Baeyer Test detect? a. differentiates between alkanes and molecules b. double bonds only. c. differentiates between alkanes and molecules d. triple bonds only.	-
3.	What does the Ammoniacal Silver Test detect? a. differentiates between alkanes and molecules b. double bonds only. c. differentiates between alkanes and molecules d. triple bonds only.	-
4.	If a compound gives a positive reaction in all fo a. aldehyde b. alkene c. alkane d. alkyne	ur tests it is most likely to be an
5.	If the compound does not react in any of the four a. alkene b. carboxylic acid c. alkane d. alkyne	ir tests, the compound could be a(n)
6.	The sulfuric acid test is also a test used for deter a. True. b. False.	rmining an organic compounds solubility.

Experiment 6 Lab Safety

- 7. Which reagent used in the functional group tests must be specially handled before discarding, and why?
 - a. bromine, as it must be discarded in the halogenated organic waste bottle in the fumehood.
 - b. ammoniacal silver test reagent, must be decomposed by the addition of nitric acid in order to prevent the formation of explosive silver acetylides.
 - c. potassium permanganate, as it must be neutralized before discarding.

Chem350 Experiment 6 Report	Date:
Student Name:	ID Number:
<u>Title:</u>	
Objective(s):	
Introduction:	

Procedure: (Ref:)

Changes/Modification:

Table 1. Table of Reagents for Experiment 6.

Reagent	Formula	Mwt. (g/mol)	Mp (°C)	Bp (°C)	Hazardous Properties
pentane					
cyclohexene					
phenylacetylene					
biphenyl					
toluene					
bromine					
dichloromethane					
Baeyer Reagent					
Ammoniacal Silver					
sulfuric acid (conc.)	H ₂ SO ₄				
acetone (wash)	CH ₃ COCH ₃			56.5	Flammable liq., irritant

Experiment 6 Part A Results:

	Bromine Test								
Test Substance	Observation	Inference	Equation						
Pentane									
Cyclohexene									
Phenylacetylene									
Biphenyl									
Toluene									
Unkown									

	Baeyer Test								
Test Substance	Observation	Inference	Equation						
Pentane									
Cyclohexene									
Phenylacetylene									
Biphenyl									
Toluene									
Unknown									

	Ammoniacal Silver Test								
Test Substance	Observation	Inference	Equation						
Pentane									
Cyclohexene									
Phenylacetylene									
Biphenyl									
Toluene									
Unkown									

	Sulfuric Acid Test							
Test Substance	Observation	Inference	Equation					
Pentane								
Cyclohexene								
Phenylacetylene								
Biphenyl								
Toluene								
Unkown								

<u>Discussion:</u>
Comments on tests, sources of error, and false positives/negatives:

Conclusion:

Instructor Led Group Infrared Analysis Problems

Use the tables below to record your results of the Infrared Spectral Analyses for the following compounds (IR spectra on CHEM350 Lab Manual pages 122-128. Label the diagnostic absorption bands on the spectra.

Functional Group absent: 2-methyl-3-butyn-2-ol Absorption Band# (cm ⁻¹) Peak Intensity (strong, medium or weak) Functional Group absent: 3-buten-2-ol Absorption Band# (cm ⁻¹) Peak Intensity (strong, medium or weak) Functional Group absent: 3-buten-2-ol Absorption Band# (cm ⁻¹) Shape (sharp, broad) Indicate (sharp, broad) Functional Group absent: Functional Group absent: Functional Group absent: Functional Group absent:	clohexanol	Absorption	Wavenumber	Peak	Peak	Functional Group
2-methyl-3-butyn-2-ol Band#		Band#	(cm ⁻¹)	Shape (sharp, broad)		Indicated
2-methyl-3-butyn-2-ol Band# Wavenumber (cm ⁻¹) Peak Shape (sharp, broad) (strong, medium or weak) Functional Group absent: 3-buten-2-ol Absorption Band# (cm ⁻¹) Peak Shape (sharp, broad) Peak Intensity (strong, medium or weak) Functional Group absent: 5-benzhydrol Absorption Band# (cm ⁻¹) Peak Shape (sharp, broad) Peak Intensity (strong, medium or weak) Functional Group absent: 6-benzhydrol Absorption Band# (cm ⁻¹) Shape (sharp, broad) Shape (sharp, broad) (strong, medium or weak)						
Band# (cm ⁻¹) Shape (sharp, broad) Intensity (strong, medium or weak) Functional Group absent: 3-buten-2-ol Absorption Band# (cm ⁻¹) Wavenumber (cm ⁻¹) Shape (sharp, broad) (strong, medium or weak) Functional Group absent: Functional Group absent: Functional Group absent: Peak Peak Intensity (strong, medium or weak) Functional Group absent: Functional Group absent: Peak Peak Intensity (strong, medium or weak) Functional Group absent:	ctional Group absent:					
Absorption Band# Wavenumber (cm ⁻¹) Peak Intensity (strong, medium or weak) Functional Group absent: Denzhydrol Absorption Band# Wavenumber (cm ⁻¹) Peak Shape (sharp, broad) Peak Intensity (strong, medium or weak) Functional Group absent:	nethyl-3-butyn-2-ol			Shape	Intensity (strong, medium	Functional Group Indicated
Absorption Band# Wavenumber (cm ⁻¹) Peak Intensity (strong, medium or weak) Functional Group absent: Denzhydrol Absorption Band# Wavenumber (cm ⁻¹) Peak Peak Intensity (strong, medium or weak) Functional Group absent:						
Absorption Band# Wavenumber (cm ⁻¹) Peak Intensity (strong, medium or weak) Functional Group absent: Denzhydrol Absorption Band# Wavenumber (cm ⁻¹) Peak Shape (sharp, broad) Peak Intensity (strong, medium or weak) Functional Group absent:						
Band# (cm ⁻¹) Shape (sharp, broad) Intensity (strong, medium or weak) Functional Group absent: Benzhydrol Absorption Band# (cm ⁻¹) Wavenumber (sharp, broad) Shape (sharp, broad) (strong, medium Indicate (strong, medium) Functional Group absent:	ctional Group absent:					
benzhydrol Absorption Band# Wavenumber (cm ⁻¹) Peak Peak Intensity (sharp, broad) (strong, medium	uten-2-ol			Shape	Intensity (strong, medium	Functional Group Indicated
benzhydrol Absorption Band# Wavenumber Peak Peak Functional Com ⁻¹ Shape Intensity (sharp, broad) (strong, medium						
benzhydrol Absorption Band# Wavenumber (cm ⁻¹) Peak Peak Intensity (sharp, broad) (strong, medium	ctional Group absent:					
Band# (cm ⁻¹) Shape Intensity Indicate (sharp, broad) (strong, medium	-	A 1	W/1	D1	D1.	E matie and Comme
	znydroi			Shape	Intensity (strong, medium	Indicated

Functional Group absent:

Instructor Led Group Infrared Analysis Problems (cont.)

benzaldehyde	Absorption Band#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strong, medium or weak)	Functional Group Indicated

Functional Group absent:

acetic acid	Absorption Band#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strong, medium or weak)	Functional Group Indicated

Functional Group absent:

dibutylamine	Absorption Band#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strong, medium or weak)	Functional Group Indicated

Functional Group absent:

Infrared Analysis Practice Problems:

Use the tables below to record your results of the Infrared Spectral Analyses of the provided known spectra on CHEM350 Lab Manual pages 131-138.

cyclohexanone	Absorption Band#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strong, medium or weak)	Functional Group Indicated

Functional Group(s) absent:

benzaldehyde	Absorption Band#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strong, medium or weak)	Functional Group Indicated

Functional Group(s) absent:

	Absorption Band#	Wavenumber (cm ⁻¹)	Peak Shape	Peak Intensity	Functional Group Indicated
ethyl benzoate			(sharp, broad)	(strong, medium or weak)	

Functional Group(s) absent:

benzoic acid	Absorption Band#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strong, medium or weak)	Functional Group Indicated

Functional Group(s) absent:

Infrared Analysis Practice Problems (cont.):

Use the tables below to record your results of the Infrared Spectral Analyses of the provided known spectra.

phenylacetylene	Absorption Band#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strong, medium or weak)	Functional Group Indicated

Functional Group(s) absent:

benzonitrile	Absorption Band#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strong, medium or ,weak)	Functional Group Indicated

Functional Group(s) absent:

	Absorption Band#	Wavenumber (cm ⁻¹)	Peak Shape	Peak Intensity	Functional Group Indicated
styrene		, ,	(sharp, broad)	(strong, medium or weak)	

Functional Group(s) absent:

	Absorption	Wavenumber	Peak	Peak	Functional Group
diethyl ether	Band#	(cm ⁻¹)	Shape (sharp, broad)	Intensity (strong, medium or weak)	Indicated

Functional Group(s) absent:

Infrared Unknowns:

Use the tables below to record your results of the Infrared Spectral Analyses for the unknowns (see handouts). Please remember to attach to the report, the unknown spectra with the diagnostic absorption bands identified.

Code: Name:	Absorption Band#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strong, medium or weak)	Functional Group Indicated
Functional Group absent:					
Code: Name:	Absorption Band#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strong, medium or weak)	Functional Group Indicated
Functional Group absent:					
Code: Name:	Absorption Band#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strong, medium or weak)	Functional Group Indicated
Functional Group absent:					
Code: Name:	Absorption Band#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strong, medium or weak)	Functional Group Indicated
Functional Group absent:					

Experiment 6 Post Lab Questions:

Answers are to be submitted with your lab report.

1. The reaction of an alkene with acidic potassium permanganate is an example of a redox reaction. Use the method that you learned in a General Chemistry course to write out a balanced equation for the reaction below.

$$a \; C_2 H_4 \; + \; b \; K M n O_4 \; + \; c \; H^+ < -----> \; d \; C_2 H_6 O_2 \; + \; e \; K^+ \; + \; f \; M n^{+2}$$

Half Rxns.

Bal. Equation:

2. The reaction of an alkene with potassium permanganate can also occur in a basic medium, in which case the inorganic product is a brown precipitate of manganese (IV) oxide. (The organic product is again the diol). Write a balanced redox equation for the reaction of an alkene with alkaline potassium permanganate.

$$a \ C_2 H_4 \ + \ b \ KMnO_4 \ + \ \ref{OH}^- < ----- \ d \ C_2 H_6 O_2 \ + \ e \ K^+ \ + \ f \ MnO_{2 \, (s)} \ + \ \ref{OH}^-$$

Half Rxns.

Bal. Equation:

3. What are the major differences you would see in the infrared spectra of an alkane, alkene, and alkyne?

<u>Chem350 Experiment 7 Report</u>	Date:		
Student Name:	ID Number:		

Experiment 7 Prelab Questions

- 1. Which of the following compounds is optically active?
 - a. ultra pure water.
 - b. acetone.
 - c. tetrahydrofuran.
 - d. dichloromethane.
 - e. none of the above.
- 2. The measured optical activity of a solid compound is affected by three major factors. They are:
 - a. concentration and temperature of the solution, and length of sample tube.
 - b. size of the molecule, natural source of chemical, and solubility.
 - c. density and temperature of compound, and length of sample tube.
- 3. If 0.8000 g compound was dissolved in 50.00 mL of solvent, and the solution was placed in a 2 dm long sample tube, and gave an (observed rotation) of +3.2 degrees, the specific rotation would be:
 - a) $+50^{\circ}$
 - b)+100°
 - $c)+1000^{o}$
- 4. During the solid-liquid extraction of the lichen with acetone, the lab manual (Exp. 7 Procedure Part A of lab manual) suggests we extract for 30 minutes. What would happen if the extraction went longer than 30 minutes?
 - a. The usnic acid being leached out of the lichen would begin to denature.
 - b. Nothing. A maximum amount of usnic acid has been extracted and further extraction time does no harm.
 - c. The extraction solvent, acetone, will begin to evaporate and thereby diminish the overall yield of usnic acid.
 - d. The experiment will have to be terminated because there will now be insufficient time to complete it.
- 5. Why is all the 'acetone extraction solvent' removed prior to beginning the recrystallization part of the procedure?
 - a. So that a saturated solution can be made using reagent grade acetone.
 - b. The acetone must be removed in order to isolate and characterize the crude usnic acid.
 - c. Acetone is not a suitable recrystallization solvent.
 - d. Tetrahydrofuran and acetone are miscible solvents so acetone must be removed prior to using the polarimeter.

Experiment 7 Lab Safety

- 6. Which reagent(s) used in this experiment must be specially handled, and why?
 - a. acetone, as it is highly flammable.
 - b. tetrahydrofuran, as it is highly toxic and flammable.
 - c. a and b are correct.

Chem350 Experiment 7 Report	Date:	
Student Name:	ID Number:	
<u>Title:</u>		
Objective(s):		
Introduction:		

$\frac{\textbf{Procedure:}}{(\text{Ref: })}$

Changes/Modification:

Procedure for extraction of usnic acid from lichen.

Procedural Step	Observations
Record appearance and amount of lichen used.	
Extraction:	
Extraction.	
Gravity Filtration	
Solvent Removal	
Recrystallization	
Product Analysis	

Table 1. Table of Reagents for Experiment 7.

Reagent	Formula	Mwt. (g/mol)	Mp (°C)	Bp (°C)	Hazardous Properties
lichen					
acetone					
ethanol					
L- tartaric acid					
water					
tetrahydrofuran					
usnic acid					

Experiment 7 Results:

Table 2. Table Summarizing Observations:

Procedural Step	Comment or Observation

Table 3. Part A-C. Table of Product, Usnic acid Extraction from Lichen

Table 3 shows a summary of the extraction results for the experiment. The calculations for % Composition of Lichen (w/w) is shown below the table.

	Mass Lichen (g)	Product Yield (g)	Appearance of Crystals	Melting Pt. (°C)	Mixed Melting Pt. (°C)	Reference Melting Pt. (°C)	% Lichen (w/w)
() Usnic acid							

[%] Weight of Lichen Calculation:

Table 4. Part D-E. Results of Polarimetry Measurements for Unknown and Usnic Acid.

Table 4 shows a summary of the polarimetry results of the experiment. The calculations for specific rotation and optical purity are shown beneath the table.

	Mass	[Solution]	Observed	Corrected	Specific	Reference	Optical
	(g)	(g/mL)	Rotation	Observed	Rotation*	Rotation	Purity
			$(\alpha)^*$	Rotation	n_{D}	$n_{\rm D}^{20}$	
				(α-blank)			
Unknown							
(L-tartaric acid)							
() Usnic acid							

^{*}At the temperature of solution during optical rotation determination:

Specific Rotation Calculations:

Optical Purity of () Usnic acid product: (O.P.= actual n_D^{20} /theoretical n_D^{20}) x 100%)

<u>Discussion:</u>
Comments on and reasons for yield (high or low), specific rotations, optical purity, and sources of error:

Conclusion:

Structure of	Product	

Experiment 7 Post Lab Questions:

1. Define the difference between diastereomers and enantiomers. Choose a specific example (eg. glucose/fructose) to help explain your answer.

2. Draw a Fischer projection and line/wedge diagrams for the two enantiomers of usnic acid. (see Figure 7.1 in Chem350 Lab Manual)

Che	em350 Experiment 8 Report	Date:
Stud	dent Name:	ID Number:
Exp	eriment 8 Prelab Questions	
1.	The preparing of cyclohexene from cyclohexano an alcohol functional group into ana. alkene b. alkane c. non-reactive. d. reactive.	l is an example of a widely used method of converting functional group?
2.	The purpose of adding sodium chloride to the aqua) to make a salt of the organic acid. b) to 'salt' out the water from the organic layer. c) to preserve the product	ueous layer in Step 6 of the procedure is to:
3.	The purpose of adding phosphoric acid to the real a. to neutralize any contaminating base. b. to act as a catalyst in the reaction. c. to slow the reaction rate and thereby increase the	
4.	How do you separate the aqueous and the cycloh a. distillation. b. reflux. c. using a separatory funnel. d. extraction.	exene organic layer?
5.	The purpose of adding saturated sodium chlo procedure is to: a. to make a salt of the organic acid. b. to make the product less soluble in the water acc. to preserve the product. d. to add water to the organic layer.	ride (brine) to the aqueous layer in Step 6 of the nd to 'salt out' the water from the organic layer.
б.	Which of the following ways would characteriz have converted cyclohexanol to cyclohexene: a. infrared spectroscopy. b. nuclear magnetic resonance spectroscopy. c. refractive index. d. density.	e your final product and thereby help prove that you

f. only a and b are correct.

- 7. What is the first step called in the mechanism for an acid catalyzed dehydration?
 - a. protonation.
 - b. elimination.
 - c. carbocation intermediate formation.
 - d. substitution.
- 8. Alexander Zaitzev's rule for elimination reactions states:
 - a. "in the addition of HX to an alkene, the more highly substituted carbocation is formed as the intermediate rather than the less highly substituted one".
 - b. "Base-induced elimination reactions generally give the more highly substituted (more stable) alkene product".
 - c. "The structure of a transition state resembles the structure of the nearest stable species. Exergonic reaction steps resemble reactants and Endergonic reaction steps resemble products".

Experiment 8 Lab Safety

- 9. Which reagent(s) used in this experiment must be specially handled, and why?
 - a. saturated sodium chloride, as it is highly corrosive.
 - b. cyclohexanol, as it is a toxic starting reagent.
 - c. phosphoric acid, as it is highly corrosive.
 - d. both b and c.

Chem350 Experiment 8 Report	Date:
Student Name:	ID Number:
Title: Preparation of Cyclohexen	<u>e from Cyclohexanol</u>
Objective(s):	
Reaction equation:	
•	
Introduction:	

$\frac{\textbf{Procedure:}}{(\text{Ref: })}$

Changes/Modification:

Procedure for the acid-catalyzed dehydration of cyclohexanol to form cyclohexene.

Procedural Step	Observations
Record amount of pure cyclohexanol used.	
Setup	
Reaction	
Reaction Work-up	
Final Distillation Procedure 1. 2. 3. 4. 5. 6.	
Volume of Forerun Boiling point range of forerun	
Boiling point of product	

Table 1. Table of Reagents for Experiment 8

Reagent	Formula	Mwt. (g/mol)	Mp (°C)	Bp (°C)	Hazardous Properties
cylcohexanol					
phosphoric acid					
cyclohexene					
sodium chloride	NaCl				
sodium carbonate					
calcium chloride	CaCl ₂				
acetone (wash)	CH ₃ COCH ₃			56.5	Flammable liq., irritant

Experiment 8 Results:

Table 2. Table Summarizing Observations:

Procedural Step	Comment or Observation

Table 3. Properties of the Acid-Catalyzed Dehydration Product, Cyclohexene

Table 3. shows a summary of the results of the experiment. The calculations for theoretical yield and percent yield should be shown below the table. Note: ______ was the limiting reagent, since the only other reagent involved in the reaction, phosphoric acid, served as a catalyst.

	Mass (g)	Appearance of Liquid	Boiling Pt. (°C) (/Pressure)	Theoretical Yield (g)	% Yield
Cyclohexene					

Boiling Point Pressure Correction:

Theoretical Yield Calculation:

% Yield Calculation:

Table 4. Tabulation of Characteristic Infrared Absorptions for cyclohexanol and cyclohexene.

Table 4 contains the results of the Infrared Spectral Analyses for cyclohexanol and cyclohexene.

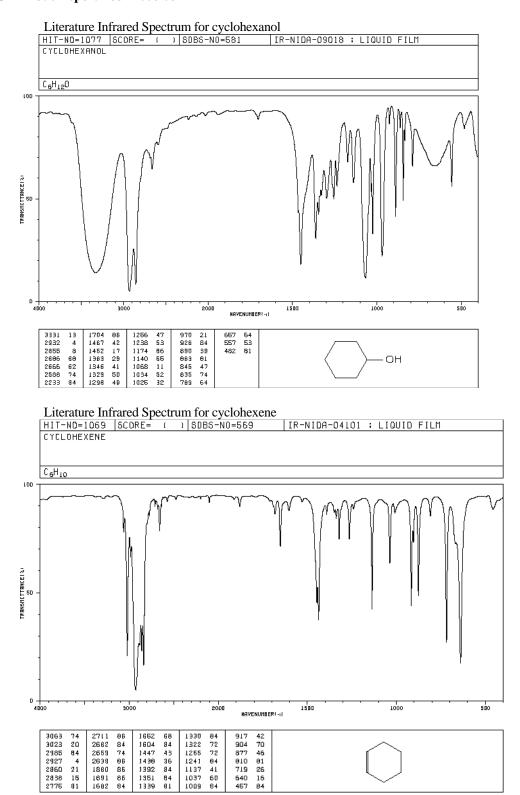
See also attached labelled spectra for peak numbering and identification.

	Peak#	Wavenumber	Peak	Peak	Functional Group
		(cm-1)	Shape	Intensity	Indicated
cyclohexanol			(sharp, broad)	(strong, medium or ,weak)	
				or ,weak)	

	Peak#	Wavenumber (cm-1)	Peak Shape	Peak Intensity	Functional Group Indicated
cyclohexene			(sharp, broad)	(strong, medium or ,weak)	

Discussion:

Comments on reasons for yield (high or low), purity (high or low), sources of error, etc.:


	Conc	lusion:	•
--	------	---------	---

Structure of Product		

Experiment 8 Post Lab Questions:

Answers to be submitted with report.

- 1. What is the purpose of adding 10% sodium carbonate solution to the distillate in step 7 of the procedure?
- 2. Identify two possible by-products that could be formed from cyclohexanol in this experiment. (HINT: See lab manual Ex.8 Introduction. You may also want to search through your textbook to find what other reactions can occur between an alcohol and a concentrated mineral acid (e.g. phosphoric acid).

Chem350 Experiment 8 (Alternate) Report Date:					
Student Name:		ID Number:			
Experiment 8 (Alternate) Prelab Questions					
1.		4-methyl-2-pentanol is an example of a widely used method of into an functional group?			
2.	The purpose of adding sulfuric acid to ta. to neutralize any contaminating base. b. to act as a catalyst in the reaction. c. to slow the reaction rate and thereby				
3.	How do you separate the aqueous and t a. distillation. b. reflux. c. using a separatory funnel. d. extraction.	he methylpentenes organic layer?			
4.	procedure is to: a. to make a salt of the organic acid.	lium chloride (brine) to the aqueous layer in Step 8 of the ne water and to 'salt out' the water from the organic layer.			
5.	Which of the following ways would converted 4-methyl-2-pentanol to a. infrared spectroscopy. b. nuclear magnetic resonance spectroscopy. c. refractive index. d. density. e. all of the above. f. only a and b are correct.	• •			
6.	What is the first step called in the mecha. protonation.b. elimination.c. carbocation intermediate formation.d. substitution.	anism for an acid catalyzed dehydration?			

- 7. Alexander Zaitzev's rule for elimination reactions states:
 - a. "in the addition of HX to an alkene, the more highly substituted carbocation is formed as the intermediate rather than the less highly substituted one".
 - b. "Base-induced elimination reactions generally give the more highly substituted (more stable) alkene product".
 - c. "The structure of a transition state resembles the structure of the nearest stable species. Exergonic reaction steps resemble reactants and Endergonic reaction steps resemble products".

Experiment 8 Lab Safety

- 8. Which reagent(s) used in this experiment must be specially handled, and why?
 - a. saturated sodium chloride, as it is highly corrosive.
 - b. 4-methyl-2-pentanol, as it is the starting reagent.
 - c. hot sulfuric acid, as it is highly corrosive.

Chem350 Experiment 8 (A		
Student Name:	ID Number:	
<u>Title:</u>		
Objective(s):		
Reaction equation:		

Introduction:

$\frac{Procedure:}{(Ref:\)}$

Changes/Modification:

Procedure for the acid-catalyzed dehydration of 4-methyl-2-pentanol to form methylpentenes.

Procedure for the acid-catalyzed denydration of 4-met Procedural Step	Observations
Record amount of pure 4-methyl-2-pentanol used.	
Setup	
Reaction	
Reaction Work-up	
Final Distillation Procedure	
1.	
2. 3.	
5. 4.	
5.	
6.	
Volume of Forerun	
Boiling point range of forerun	
Delling a sint of any host	
Boiling point of product	

Table 1. Table of Reagents for Optional Experiment 8

Reagent	Formula	Mwt. (g/mol)	Mp (°C)	Bp (°C)	Hazardous Properties
4-methyl-2-pentanol	C ₆ H ₁₄ O	102.18		132	
sulfuric acid	H ₂ SO ₄				
sodium hydroxide (10%)	NaOH				
sodium chloride	NaCl				
calcium chloride	CaCl ₂				
acetone (wash)	CH ₃ COCH ₃			56.5	Flammable liquid, irritant
1-pentene, 2-methyl	C ₆ H ₁₂	84.16		62	Flammable liquid, irritant
1-pentene, 4-methyl	C ₆ H ₁₂	84.16		53-54	Flammable liquid, irritant
2-pentene, 2-methyl	C ₆ H ₁₂	84.16		67	Flammable liquid, irritant
2-pentene, 3-methyl				69	Flammable liquid, irritant
2-pentene, 4-methyl				57-58	Flammable liquid, irritant

Optional Experiment 8 Results:

Table 2. Table Summarizing Observations:

Procedural Step	Comment or Observation

Table 3. Properties of the Acid-Catalyzed Dehydration Products, Methylpentenes

Table 3. shows a summary of the results of the experiment. The calculations for theoretical yield and percent yield should be shown below the table. Note: ______ was the limiting reagent, since the only other reagent involved in the reaction, sulfuric acid, served as a catalyst.

	Mass (g)	Appearance of Liquid	Boiling Pt. (°C)	Theoretical Yield	% Yield
			(/Pressure)	(g)	
Methylpentenes					

Boiling Point Pressure Correction:

Theoretical Yield Calculation:

% Yield Calculation:

Table 4. Tabulation of Characteristic Infrared Absorptions for 4-methyl-2-pentanol and methylpentenes.

Table 4 contains the (hypothetical) results of the Infrared Spectral Analyses for 4-methyl-2-pentanol and methylpentenes.

See also attached labelled spectra for peak numbering and identification.

bee also attached habened sp	ectra for pea	k nameering and r	aciitiii catioii.		
	Peak#	Wavenumber	Peak	Peak	Functional Group
		(cm-1)	Shape	Intensity	Indicated
4-methyl-2-pentanol			(sharp, broad)	(strong, medium	
				or ,weak)	

methylpentenes	Peak#	Wavenumber (cm-1)	Peak Shape (sharp, broad)	Peak Intensity (strong, medium or ,weak)	Functional Group Indicated
				, ,	

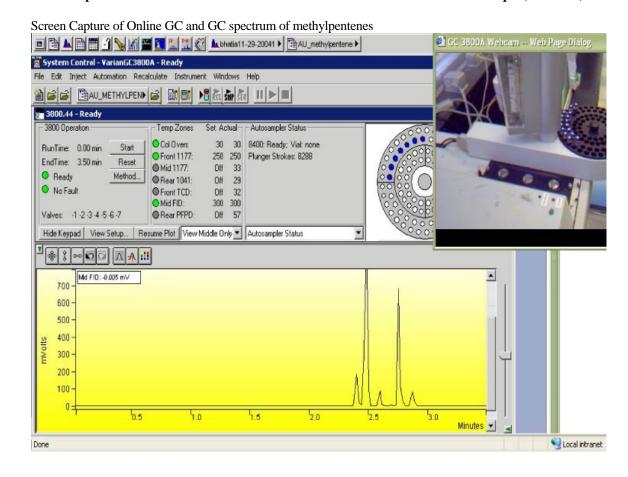
Tabulation of GC methylpentenes results (http://www.remotelab.ca)

Table 1 Concentration (%v/v) of Isomers determined by Gas Chromatography

Component	%(v/v)
4-methyl-1-pentene	
cis and trans-4-methyl-2-pentene	
2-methyl-1-pentene	
2-methyl-2-pentene	
cis and trans-3-methyl-2-pentene	

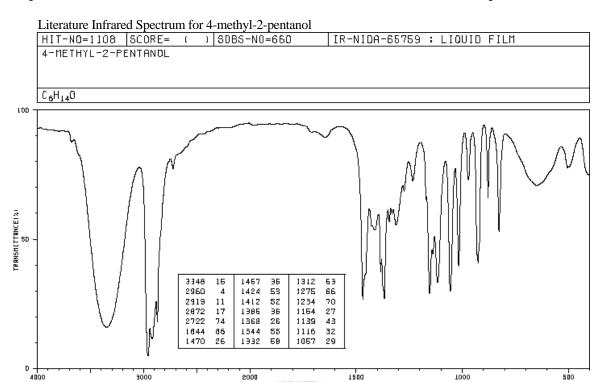
(attach online printed report to your lab report)

<u>Discussion:</u>
Comments on reasons for yield (high or low), purity (high or low), % isomers, sources of error, etc.:

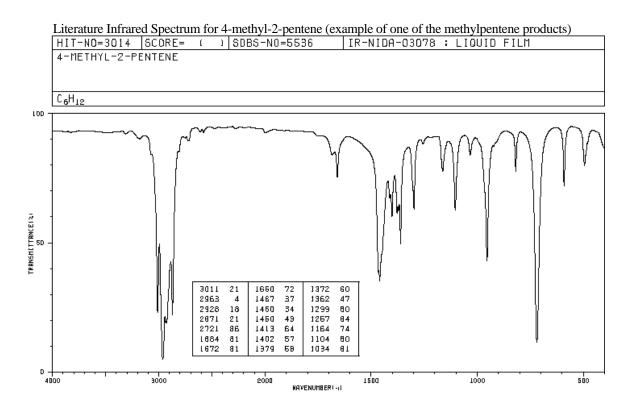

Conclusion:

Structure of Products

Experiment 8 (Alternate/Optional) Post Lab Questions:


Answers to be submitted with report.

- 1. What is the purpose of adding 10% sodium hydroxide solution to the distillate in step 6 of the procedure?
- 2. Would infrared spectroscopy be useful in identifying the products of the reaction performed in this experiment? Briefly explain your answer.



Experiment 8 (Alternate) Student Data for GC Analysis of methylpentenes product

Table1. Concentration (%v/v) o	n=17	
Component	Avg %(v/v)	Std Dev %(v/v)
4-methyl-1-pentene	5.326	0.099
4-methyl-2-pentene (cis/trans)	65.329	1.129
2-methyl-1-pentene	4.697	0.133
2-methyl-2-pentene	22.181	0.808
3-methyl-2-pentene (cis/trans)	2.467	0.591
Average Total % Isomers	100.000	

HAVENUMBER (-i)

Chem350 Experiment 9 Report	Date:
Student Name:	ID #:

Experiment 9 Prelab Questions

- 1. What is the purpose of dissolving the acetanilide in glacial acetic acid prior to beginning the nitration reaction?
 - a. So that the acetanilide is 'in solution' when the sulfuric acid is added.
 - b. So that the acetanilide is 'in solution' when the nitrating mixture is added.
 - c. To stabilize the acetanilide prior to the addition of sulfuric acid.
 - d. To prevent the acetanilide from reacting to quickly when the nitrating mixture is added.
- 2. What happens when you mix sulfuric acid with nitric acid?
 - a. The sulfuric acid is the weaker acid so nitric acid converts it to sulfate ion.
 - b. Nitronium ion is formed.
 - c. a slow endothermic reaction occurs.
- 3. What is the name of the electrophile used in this experiment?
 - a. sulfuric acid.
 - b. nitire acid.
 - c. acetanilide.
 - d. nitronium ion.
- 4. What acts as the nucleophile in this experiment?
 - a. sulfuric acid.
 - b. nitire acid.
 - c. acetanilide.
 - d. nitronium ion.
- 5. Why do you wash the product several times (Procedure Steps 8-10) with ice-cold water?
 - a. to rinse away all unreacted acetanilide.
 - b. to rinse away excess acid.
 - c. a and b are correct.
- 6. How is the product characterized in this experiment?
 - a. melting point.
 - b. melting point and infrared spectroscopy.
 - c. yield, melting point and infrared spectroscopy.
 - d. none of the above.
- 7. What major differences in absorption bands would you expect to see in the infrared spectra of acetanilide and *p*-nitroacetanilide?
 - a. amide carbonyl adsorption at 1680 cm⁻¹ for both and only a nitro ~1500 cm⁻¹ adsorption at for the starting reagent.
 - b. the absorption due to the introduced nitro group in the product (1600-1500 and 1400-1300 cm⁻¹).
 - c. the absorption due to the introduced amide group in the product (1600-1500 and 1400-1300 cm⁻¹).

Experiment 9 Lab Safety

- Which reagent(s) used in this experiment must be specially handled, and why? 8.
 - a. nitric acid, it is highly corrosive.
 - b. glacial acetic acid, it is highly corrosive.c. sulfuric acid, it is highly corrosive.

 - d. all of the above.

Chem350 Experiment 9 Report	Date:
Student Name:	ID Number:
<u>Title:</u>	
Objective(s):	
Equation(s):	
Introduction:	

$\frac{\textbf{Procedure:}}{(\text{Ref: })}$

Changes/Modification:

Proc. For the electrophilic aromatic substitution of acetanilide to form p-nitroacetanilide.

Procedural Step	Observations
Record amount of pure acetanilide used.	

Table 1. Table of Reagents for Experiment 9

Reagent	Formula	Mwt. (g/mol)	Mp (°C)	Bp (°C)	Hazardous Properties
acetanilide					
acetone (wash)					

Experiment 9 Results:

Table 2. Table Summarizing Observations:

Proc	edural Step		Comment o	r Observation	
		L			
Table 3. presents	s the summary of	the results of the experiment	. The calculation	ons for limiting	reagent,
Table 3. Table of <i>p</i> -nitro Table 3. presents theoretical yield and perceimiting reagent. Name of product	s the summary of		Melting Pt.	ons for limiting was found Theoretical Yield	to be the
Table 3. presents theoretical yield and percentimiting reagent.	s the summary of the shown that the	the results of the experiment n below the table. Note:	Melting Pt.	was found Theoretical	to be the
Table 3. presents theoretical yield and percenting reagent.	s the summary of the shown that the	the results of the experiment n below the table. Note:	Melting Pt.	was found Theoretical Yield	to be the
Table 3. presents theoretical yield and percenting reagent.	s the summary of the shown that the	the results of the experiment n below the table. Note:	Melting Pt.	was found Theoretical Yield	to be the
Table 3. presents neoretical yield and percenting reagent.	s the summary of the ent yield are shown Mass (g)	the results of the experiment n below the table. Note: Appearance of Crystals	Melting Pt.	was found Theoretical Yield	to be the
Table 3. presents neoretical yield and percenting reagent.	s the summary of the ent yield are shown Mass (g)	the results of the experiment n below the table. Note: Appearance of Crystals	Melting Pt.	was found Theoretical Yield	to be the
Table 3. presents theoretical yield and percenting reagent.	s the summary of the ent yield are shown Mass (g)	the results of the experiment n below the table. Note: Appearance of Crystals	Melting Pt.	was found Theoretical Yield	to be the
Table 3. presents theoretical yield and percenting reagent.	s the summary of the ent yield are shown Mass (g)	the results of the experiment n below the table. Note: Appearance of Crystals	Melting Pt.	was found Theoretical Yield	reagent, to be the % Yield
Table 3. presents theoretical yield and percenting reagent.	s the summary of the ent yield are shown Mass (g)	the results of the experiment n below the table. Note: Appearance of Crystals	Melting Pt.	was found Theoretical Yield	to be the
Table 3. presents theoretical yield and percenting reagent.	s the summary of the ent yield are shown Mass (g)	the results of the experiment n below the table. Note: Appearance of Crystals	Melting Pt.	was found Theoretical Yield	to be the
Table 3. presents theoretical yield and percenting reagent.	s the summary of the ent yield are shown Mass (g)	the results of the experiment n below the table. Note: Appearance of Crystals	Melting Pt.	was found Theoretical Yield	to be the

Tabulation of Characteristic Infrared Absorptions for acetanilide and p-nitroacetanilide.

Table 4 contains the results of the Infrared Spectral Analyses for acetanilide and *p*-nitroacetanilide.

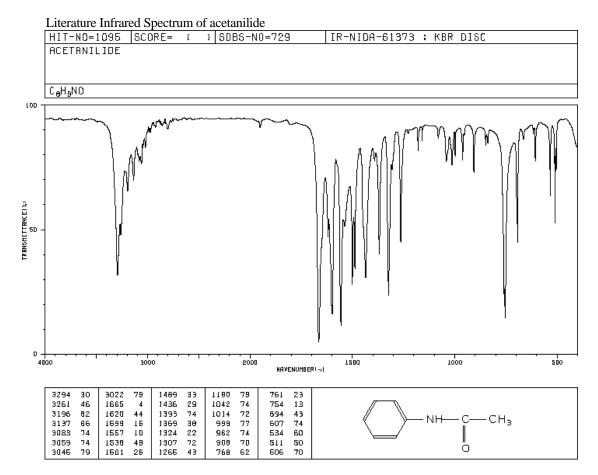
See also attached labelled s	nectra for neak	numbering and	identification
occ also attached fabelied s	pecua for peak	numbering and	identification.

	Peak#	Wavenumber	Peak	Peak	Functional Group
		(cm-1)	Shape	Intensity	Indicated
Acetanilide			(sharp, broad)	(strong, medium or ,weak)	

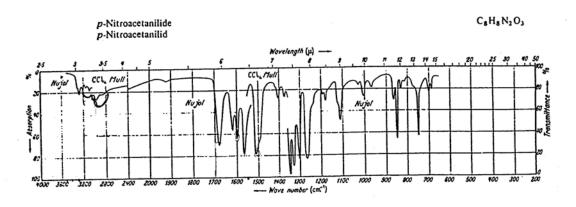
	Peak#	Wavenumber (cm-1)	Peak Shape	Peak Intensity	Functional Group Indicated
<i>p</i> -nitroacetanilide		(CIII 1)	(sharp, broad)	(strong, medium or ,weak)	maicacca

<u>Discussion:</u>
Comments on and give reasons for yield (high or low), purity, sources of error, and infrared spectrum results,

Conclus	sion:


Structure of Product

Experiment 9 Post Lab Questions:


Answers to be submitted with your lab report.

1. During the nitration of acetanilide (Step 4 of the procedure), care is taken to keep the reaction mixture cool. What do you think might be the consequences of allowing the reaction mixture to become too warm?

2. What organic compound (other than ethanol) would you reasonably expect to isolate from the ethanol/water mixture that was used to recrystallize your 4-nitroacetanilide?

Literature Spectrum of p-nitroacetanilide (nujol mull)-from Sigma Aldrich IR

CHEM350 2006-08 Table of Reagents

Compound Name	Chemical Formula	Solid (S) or Liquid (L)	Formula Weight	MP or BP	Density (g/mL)	Refract. Index	Hazardous Properties*
acetanilide	CH3CONHC6H5	S	135.17	113-115			Toxic, irritant
acetanilide,4-methyl	CH3CONHC6H4CH3	S	149.19	149-151			Irritant
acetanilide, <i>p</i> -nitro	CH ₃ CONHC ₆ H ₄ NO ₂	S	180.16	216			Irritant
acetanilide, <i>o</i> -nitro	CH ₃ CONHC ₆ H ₄ NO ₂	S	180.16	94			Irritant
acetanilide, m-nitro	CH ₃ CONHC ₆ H ₄ NO ₂	S	180.16	154-156			Irritant
acetic acid, glacial (17.4 M)	CH ₃ CO ₂ H	L	60.05	118.1	1.049		Corrosive, hygroscopic
acetic acid, <i>p</i> -ethoxyphenyl	C ₂ H ₅ OC ₆ H ₄ CH ₂ CO ₂ H	S	180.2	87-90	2.0.7		Irritant
acetic anhydride	(CH ₃ CO) ₂ O	L	102.09	140	1.082	1.3900	Corrosive, lachrymator
acetone	CH ₃ COCH ₃	L	58.08	56.5	0.7899	1.3590	Flammable, irritant
acetone, diethylamino	(C ₂ H ₅) ₂ NCH ₂ COCH ₃	L	129.2	64/16mm	0.832	1.4250	Irritant
acetophenone	C ₆ H ₅ COCH ₃	L	120.15	202	1.030	1.5325	Irritant
activated carbon	00-15-0-01-5	S					(see charcoal)
allyl alcohol (2-propen-1-ol)	CH ₂ =CHCH ₂ OH	L	58.08	96-98	0.854	1.4120	Highly Toxic, flammable
ammonia (14.8 M)	NH ₃	L	17.03		0.90		Corrosive, lachrymator
ammonium hydroxide (14.8 M)	NH ₄ OH	L	35.05		0.90		Corrosive, lachrymator
aniline	C ₆ H ₅ NH ₂	L	93.13	184	1.022	1.5860	Highly toxic, irritant
aniline, 4-bromo	BrC ₆ H ₄ NH ₂	S	172.03	62-64		000	Toxic, irritant
aniline, 4-chloro	ClC ₆ H ₄ NH ₂	S	127.57	72.5			Highly toxic, irritant
aniline, o-ethyl	CH ₃ CH ₂ C ₆ H ₄ NH ₂	L	121.18	210		1.5590	Toxic, irritant
aniline, 2-ethoxy	CH ₃ CH ₂ OC ₆ H ₄ NH ₂	L	137.18	231-233	1.051	1.5550	Irritant, light sensitive
aniline, 4-methyl	CH ₃ C ₆ H ₄ NH ₂	L	107.16	196	0.989	1.5700	Toxic, irritant
aniline, 3-nitro	NO ₂ C ₆ H ₄ NH ₂	S	138.13	114	0.707	1.5700	Highly toxic, irritant
aspirin (see salicylic acid, acetate)	CH ₃ CO ₂ C ₆ H ₄ CO ₂ H	S	180.16	138-140			Irritant, toxic
benzaldehyde	C ₆ H ₅ CHO	L	106.12	179.5	1.044	1.5450	Hi.toxic, cancer susp.agent
benzaldehyde, 4-methyl	CH ₃ C ₆ H ₄ CHO	L	120.15	204-205	1.019	1.5454	Irritant (p-tolualdehyde)
benzaldehyde,4-methyx	CH ₃ OC ₆ H ₄ CHO	L	136.15	248	1.119	1.5730	Irritant, (anisaldehyde)
benzaldehyde, 4-nitro	NO ₂ C ₆ H ₄ CHO	S	151.12	106	1.117	1.3730	Irritant
benzene	C ₆ H ₆	L	81.14	80.1	0.908	1.4990	Flamm., cancer susp.agent
benzene, bromo	C ₆ H ₅ Br	L	157.02	155-156	1.491	1.5590	Irritant
benzene, chloro	C ₆ H ₅ Cl	L	112.56	133-130	1.107	1.5240	Flammable, irritant
benzoate, ethyl	C ₆ H ₅ CO ₂ C ₂ H ₅	L	150.18	212.6	1.051	1.5050	Irritant
benzoate, methyl	C ₆ H ₅ CO ₂ C ₂ H ₅ C ₆ H ₅ CO ₂ CH ₃	L	136.15	198-199	1.094	1.5170	Irritant
benzocaine.	H ₂ NC ₆ H ₄ CO ₂ C ₂ H ₅	S	165.19	88-92	1.054	1.3170	Irritant
4-aminobenzoic acid, ethyl ester,	112110611400202115		103.19	88-92			IIItalit
benzoic acid	C ₆ H ₅ CO ₂ H	S	122.12	122.4			Irritant
benzoic acid, 4-acetamido	CH ₃ CONHC ₆ H ₄ CO ₂ H	S	179.18	256.5			Irritant
benzoic acid, 4-amino	H ₂ NC ₆ H ₄ CO ₂ H	S	137.14	188-189	1.374		Irritant
benzoic acid, 4-animo benzoic acid, 3-chloro	ClC ₆ H ₄ CO ₂ H	S	156.57	158	1.374		Irritant
benzoic acid, 4-chloro	ClC ₆ H ₄ CO ₂ H	S	156.57	243			Irritant
benzoic acid, 3-hydroxy	HOC ₆ H ₄ CO ₂ H	S	138.12	210-203			Irritant
benzoic acid, 4-hydroxy	HOC ₆ H ₄ CO ₂ H	S	138.12	215-217			Irritant
benzoic acid, 2-methyl	CH ₃ C ₆ H ₄ CO ₂ H	S	136.15	103-105			See also o-toluic acid
1 1 1 1 1 1		S	136.15	180-182			a
benzoic acid, 4-methyl benzoic acid, 4-nitro	CH ₃ C ₆ H ₄ CO ₂ H O ₂ NC ₆ H ₄ CO ₂ H	S	167.12	239-241			See also <i>p</i> -toluic acid Irritant
benzonitrile	C ₆ H ₅ CN	L	107.12	191	1.010	1.5280	Irritant
benzophenone	(C ₆ H ₅) ₂ CO	S	182.22	49-51	1.010	1.5200	Irritant
benzoyl chloride	C ₆ H ₅ COCl	L	140.57	198	1.211	1.5530	Corrosive, toxic
benzyl alcohol	C ₆ H ₅ CH ₂ OH	L	108.14	205	1.045	1.5400	Irritant, hygroscopic
benzyl amine	C ₆ H ₅ CH ₂ OH C ₆ H ₅ CH ₂ NH ₂	L	107.16	184-185	0.981	1.5430	Corrosive, lachrymator
benzyl chloride	C ₆ H ₅ CH ₂ Cl	L	126.59	179	1.1002	1.0 100	Hi.toxic, cancer susp.agent
biphenyl	C ₆ H ₅ C ₆ H ₅	S	154.21	69-71	0.992		Irritant
boric acid	H ₃ BO ₃	S	61.83	0, 11	1.435		Irritant, hygroscopic
Brady's Reagent	(NO ₂) ₂ C ₆ H ₃ NHNH ₂	L		ee hydrazine, 2,4-		1	min, ii gioscopie
bromine	Br_2	L	159.82	58.8	3.102	•	Highly toxic, oxidizer
butanal	CH ₃ CH ₂ CH ₂ CHO	L	72.11	75	5.102		Flammable, corrosive
1,3-butadiene, E,E-1,4-diphenyl	C ₆ H ₅ C ₄ H ₄ C ₆ H ₅	S	206.29	153			Irritant
butane, 1-bromo	CH ₃ CH ₂ CH ₂ CH ₂ Br	L	137.03	101.3	1.276	1.4390	Flammable, irritant
butane, 2-bromo	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CHBrCH ₃	L	137.03	91.3	1.255	1.4369	Flammable, irritant
outuite, 2-0101110	C113C112C11D1C113	L	137.03	71.3	1.433	1.7303	1 miniatic, irritant

Table of Reagents

CHEM350 Report Book 2006-08

Compound Name	Chemical Formula	Solid (S) or Liquid (L)	Formula Weight	MP or BP	Density (g/mL)	Refract. Index	Hazardous Properties*
butane, 1-chloro	CH ₃ CH ₂ CH ₂ CH ₂ Cl	L	92.57	78.4	0.886	1.4024	Flammable liquid
butane, 2-chloro	CH ₃ CH ₂ CHClCH ₃	L	92.57	68.2	0.873	1.3960	Flammable liquid
1-butanol	CH ₃ CH ₂ CH ₂ CH ₂ OH	L	74.12	117-118	0.810	1.3990	Flammable, irritant
2-butanol	CH ₃ CH ₂ CHOHCH ₃	L	74.12	99.5-100	0.807	1.3970	Flammable, irritant
2-butanone	CH ₃ CH ₂ COCH ₃	L	72.11	80	0.805	1.3790	Flammable, irritant
2-butanone, 3-hydroxy-3-methyl	(CH ₃) ₂ C(OH)COCH ₃	L	102.13	140-141	0.971	1.4150	Irritant
1-butene, 3-chloro-	CH ₃ CH(Cl)CH=CH ₂	L	90.55	62-65	0.900	1.4155	Flammable, lachrymator
3-buten-2-ol	CH ₂ =CHCH(OH)CH ₃	L	72.11	96-97	0.832	1.4150	Flammable, irritant
n-butyl butyrate	C ₃ H ₇ CO ₂ C ₄ H ₉	L	144.21	164-165	0.871	1.4060	Irritant
3-butyn-2-ol, 2-methyl	CH≡CC(CH ₃) ₂ OH	L	84.12	104	0.868	1.4200	Flammable, toxic
calcium carbonate	CaCO ₃	S	100.99		2.930		Irritant, hygroscopic
calcium chloride, anhydr.	CaCl ₂	S	110.99		2.150		Irritant, hygroscopic
camphor (1R, +)	C ₁₀ H ₁₆ O	S	152.24	179-181	0.990	1.5462	Flamm., irritant
carbon dioxide, solid	CO ₂	S	44.01	-78.5(subl.)		- 10 10-	Frost bite burns
carbon tetrachloride	CCl ₄	L	153.82	76	1.594		Susp. Cancer agent
charcoal (Norit)	7 7 7	S		rizing agent, used		izations	Irritant
chloroform	CHCl ₃	L	119.38	61.3	1.500		Highly toxic
cinnamaldehyde, trans	C ₆ H ₅ CH=CHCHO	L	132.16	246(decomp)	1.048	1.6220	Irritant
cinnamic acid, trans	C ₆ H ₅ CH=CHCO ₂ H	S	148.16	135-136			Irritant
crotonaldehyde	CH ₃ CH=CHCHO	L	70.09	102.4	0.846	1.4365	Highly toxic, flammable.
Cyclohexane	C_6H_{12}	L	84.16	80.7	0.779	1.4260	Flammable, irritant
cyclohexane, bromo	C ₆ H ₁₁ Br	L	163.06	166.2	1.324	1.4950	Flammable, irritant
cyclohexane, methyl	C ₆ H ₁₁ CH ₃	L	98.19	101	0.770	1.4220	Flammable, irritant
cyclohexene	C ₆ H ₁₀	L	82.15	83	0.811	1.4460	Flammable, irritant
cyclohexanol	C ₆ H ₁₁ OH	L	100.16	161.1	0.963	1.4650	Irritant, hygroscopic
cyclohexanone	C ₆ H ₁₀ (=O)	L	98.15	155.6	0.947	1.4500	Corrosive, toxic
cyclohexanone, 4-methyl	CH ₃ C ₆ H ₉ (=O)	L	112.17	170	0.914	1.4460	Corrosive, toxic
cyclopentane	C ₅ H ₁₀	L	70.14	49.5	0.751	1.4000	Flammable, irritant
cyclopentane, bromo	C₅H₀Br	L	149.04	137-138	1.390	1.4881	Flammable
cyclopentanone	C ₅ H ₈ (=O)	L	84.12	130.6	0.951	1.4370	Flammable, irritant
dichloromethane	CH ₂ Cl ₂	L	84.93	40.1	1.325	1.4240	Toxic, irritant
diethyl ether (see ethyl ether)	C ₂ H ₅ OC ₂ H ₅	L	74.12	34.6	0.708	1.3530	Flammable, toxic
1,4-dioxane	C ₂ H ₈ O ₂	L	88.11	100-102	1.034	1.4220	Flamm., cancer susp.agent
diphenylmethanol	(C ₆ H ₅) ₂ CH(OH)	S	184.24	65-67	1.054	1.4220	Irritant
1 7	CH ₃ CO ₂ C ₂ H ₅	L	88.11	76-77	0.902	1.3720	Flammable, irritant
ethyl acetate ethyl alcohol, anhydrous	CH ₃ CO ₂ C ₂ H ₅ CH ₃ CH ₂ OH	L	46.07	78.5	0.902	1.3600	Flammable, poison
ethyl ether, absolute	CH ₃ CH ₂ OCH ₂ CH ₃	L	74.12	34.6	0.783	1.3530	Flammable, irritant
· · · · · · · · · · · · · · · · · · ·		S			0.708	1.3330	· · · · · · · · · · · · · · · · · · ·
fluorene	C ₁₃ H ₁₀		166.22 30.03	114-116 96	1.002	1 2765	Irritant
formaldehyde (sol'n) formamide, N,N-dimethyl	HCHO HCON(CH ₃) ₂	L L	73.10	149-156	1.083 0.9487	1.3765 1.4310	suspect. Cancer agent suspect. Cancer agent
, ,	(C ₄ H ₃ O)CH ₂ NH ₂	L	97.12	145-146	1.099	1.4900	Irritant
furfuryl amine						1.4900	
gold	Au	S	196.97	1064	19.28		Expensive/valuable
n-hexane	CH ₃ (CH ₂) ₄ CH ₃	L	86.18	69	0.659	1.3750	Flammable, irritant
hydrazine, 2,4-dinitrophenyl	(NO ₂) ₂ C ₆ H ₃ NHNH ₂	70% soln	198.14	60.70	0.650	1.0500	Flammable, irritant
hexanes	C ₆ H ₁₄	L	86.18	68-70	0.672	1.3790	Flammable, irritant
hydrochloric acid, conc. 12 M	HCl	L	36.46	2	1.20		Corrosive, highly toxic
iodine	I_2	S	253.81	133	4.930		Corrosive, highly toxic
lichen		S					Allergin
ligroin (high bp petrol. Ether)	C ₆ -C ₇ (light naphtha)	L		60-80	0.656	1.3760	Flammable, irritant
Lucas Reagent		Solution	of hydrochlo	pric acid/zinc chlor	`	nc dust)	Toxic, irritant
magnesium (metal)	Mg	S	24.31	651	1.75		Flammable
magnesium oxide	MgO	S	40.31		3.58		Moist. Sens., irritant
magnesium sulfate, anhydrous	$MgSO_4$	S	120.37		2.660		Hygroscopic
magnesium sulfate, 7-hydrate	MgSO ₄ .7H ₂ O	S	246.48		1.670		(psom salt)
manganese dioxide	MnO_2	S	86.94	535 (dec.)	5.026		Oxidizer, irritant
methanol, anhyd.	CH₃OH	L	32.04	64.5	0.791	1.3290	High. Toxic, flammable
methanol, diphenyl	$(C_6H_5)_2CH(OH)$	S	184.24	69			Irritant
methanol, triphenyl	$(C_6H_5)_3C(OH)$	S	260.34	164.2	1		Irritant

CHEM350 2006-08 Table of Reagents

Compound	Chemical	Solid (S) or	Formula	MP or BP	Density	Refract.	Hazardous
Name	Formula	Liquid (L)	Weight	(°C)	(g/mL)	Index	Properties*
methylene chloride	CH ₂ Cl ₂	L	84.93	40.1	1.325	1.4230	See dichlormethane
mineral spirits (light kerosene)	C ₁₂ -C ₁₄	L		179-210	0.752	1.4240	Flammable, irritant
naphthalene	$C_{10}H_{8}$	S	128.17	80.5			Flamm., susp.cancer agent
nitric acid (conc. 15.4 M)	HNO_3	L	63.01		1.400		Corrosive, oxidizer
2-octanone	CH ₃ (CH ₂) ₅ COCH ₃	L	128.22	173	0.819	1.4150	Irritant
pentane	C_5H_{12}	L	72.15	36.1	0.626	1.3580	Flammable, irritant
2-pentanol, 4-methyl	$C_6H_{14}O$	L	102.18	132	0.802	1.4110	Irritant
3-pentanol	C ₂ H ₅ CH(OH)C ₂ H ₅	L	88.15	115/749mm	0.815	1.4100	Flammable, irritant
3-penten-2-one, 4-methyl	(CH ₃) ₂ C=CHCOCH ₃	L	98.15	129	0.858	1.4450	Flammable, lachrymator
1-pentene, 2-methyl	C_6H_{12}	L	84.16	62	0.682	1.3920	Flammable, irritant
1-pentene, 4-methyl	C_6H_{12}	L	84.16	53-54	0.665	1.3820	Flammable, irritant
2-pentene, 2-methyl	C_6H_{12}	L	84.16	67	0.690	1.400	Flammable, irritant
2-pentene, 3-methyl	C_6H_{12}	L	84.16	69	0.698	1.4040	Flammable, irritant
2-pentene, 4-methyl	C_6H_{12}	L	84.16	57-58	0.671	1.3880	Flammable, irritant
petroleum ether, (Skelly B)	Mixt. of C ₅ -C ₆	L		35-60	0.640		Flammable, toxic
petroleum ether, hi bp (ligroin)	Mixt. of C ₆ -C ₇	L		60-80	0.656	1.3760	Flammable, toxic
phenethyl alcohol	C ₆ H ₅ CH ₂ CH ₂ OH	L	122.17	221/750mm	1.023	1.5320	Toxic, irritant
phenol	C ₆ H ₅ OH	S	94.11	40-42	1.071		Highly toxic, corrosive
phenol, 2,4-dimethyl	(CH ₃) ₂ C ₆ H ₃ OH	S	122.17	22-23	1.011	1.5380	Corrosive, toxic
phenol, 2,5-dimethyl	$(CH_3)_2C_6H_3OH$	S	122.17	75-77	0.971		Corrosive, toxic
phenylacetylene	C ₆ H ₅ C≡CH	L	102.14	142-144	0.930	1.5490	Flamm., cancer susp.agent
phenylmagnesium bromide	C ₆ H ₅ MgBr	L	181.33		1.134		Flammable, moist.sensit.
phosphoric acid (85%, 14.7 M)	H_3PO_4	L	98.00		1.685		Corrosive
potassium chromate	K ₂ CrO ₄	S	194.20	968	2.732		Canc.susp.agent, oxidizer
potassium dichromate	K ₂ Cr ₂ O ₇	S	294.19	398			Hi.toxic, canc.susp.agent
potassium hydroxide	КОН	S	56.11				Corrosive, toxic
potassium iodide	KI	S	166.01	681	3.130		Moist.sens., irritant
potassium permanganate	$KMnO_4$	S	158.04	d<240	2.703		Oxidizer, corrosive
propane, 2-chloro, 2-methyl	(CH ₃) ₃ CCl	L	92.57	50	0.851	1.3848	Flammable
propane, 2-nitro	(CH ₃) ₂ CHNO ₂	L	89.09	120	0.992	1.3940	Canc.susp.agent, flamm.
2-propanol, 2-methyl-	(CH ₃) ₃ COH	L	74.12	82.3	0.7887		Flammable, irritant
propionate, ethyl	$C_2H_5CO_2C_2H_5$	L	102.13	99	0.891	1.3840	Flammable, irritant
propionic acid	C ₂ H ₅ CO ₂ H	L	74.08	141	0.993	1.3860	Corrosive, toxic
rosaniline hydrochloride	C ₂₀ H ₁₄ (NH ₂) ₃ Cl	Solution	337.86	250 (dec)			Susp. cancer agent
salicylic acid	HOC ₆ H ₄ CO ₂ H	S	138.12	158-160			Toxic, irritant
salicylic acid, acetate ester	CH ₃ CO ₂ C ₆ H ₄ CO ₂ H	S	180.16	138-140			Irritant, toxic
Schiff's Reagent		Solution	of rosear	niline hydrochlori	de & sulfur o	dioxide	Toxic
silane, tetramethyl	Si(CH ₃) ₄	L	88.23	26-28	0.648	1.3580	Flammable, hygroscopic
silica, sand	SiO ₂	S	60.09	NA			abrasive
silver nitrate	AgNO ₃	S	169.88	212	4.352		Highly toxic, oxidizer
sodium acetate	CH ₃ CO ₂ Na	S	82.03				hygroscopic
sodium bisulfite	NaHSO ₃	S			1.480		Severe irritant
sodium borohydride	NaBH ₄	S	37.38	400			Flam. solid, corrosive
sodium bicarbonate	NaHCO ₃	S	84.01		2.159		Moist. sensitive
sodium carbonate	Na ₂ CO ₃	S	105.99	851	2.532		Irritant, hygroscopic
sodium chloride	NaCl	S	58.44	801	2.165		Irritant, hygroscopic
sodium dichromate, dihydrate	Na ₂ Cr ₂ O ₇ .2H ₂ O	S	298.00		2.350		Hi.toxic, cancer susp.agent
sodium hydrogen carbonate	NaHCO ₃	S	84.01		2.159		See sodium bicarbonate
sodium hydroxide	NaOH	S	40.00				Corrosive, toxic
sodium iodide	NaI	S	149.89	661	3.670		Moist.sens., irritant
sodium metabisulfite	$Na_2S_2O_5$	S	190.10		1.480		Moist.sens., toxic
sodium methoxide	NaOCH ₃	S	54.02				Flam. solid, corrosive
sodium sulfate	Na ₂ SO ₄	S	142.04	884	2.680		Irritant, hygroscopic
styrene	C ₆ H ₅ CH=CH ₂	L	104.15	146	0.909		Flammable
styrene, β-bromo	C ₆ H ₅ CH=CHBr	L	183.05	112/20mm	1.427	1.6070	Irritant
sucrose	$C_{12}H_{22}O_{11}$	S	342.30	185-187			Tooth Decay!
sulfur dioxide	SO_2	Gas	64.06	-10 bp			Nonflamm, corrosive
		1					

Table of Reagents

CHEM350 Report Book 2006-08

Compound Name	Chemical Formula	Solid (S) or Liquid (L)	Formula Weight	MP or BP (°C)	Density (g/mL)	Refract. Index	Hazardous Properties*
sulfuric acid (conc. 18 M)	H ₂ SO ₄	L	98.08		1.840		Corrosive, oxidizer
sulfurous acid	H_2SO_3	L	82.08		1.030		Corrosive, toxic
L-tartaric acid	HO ₂ CC ₂ H ₂ (OH) ₂ CO ₂ H	S	150.09	171-174			Irritant
tetrahydrofuran	C ₄ H ₈ O	L	72.11	65-67	0.889	1.4070	Flammable, irritant
tetramethylsilane	Si(CH ₃) ₄	L	88.23	26-28	0.648	1.3580	Flammable, hygroscopic
tin	Sn	S	118.69		7.310		Flammable solid, moist.sens.
Tollen's Reagent		L		See ammonia + si	lver nitrate		
toluene	C ₆ H ₅ CH ₃	L	92.14	110.6	0.867	1.4960	Flammable, toxic
toluene, 4-nitro	$NO_2C_6H_4CH_3$	S	137.14	52-54	1.392		Hi.toxic, irritant
o- or 2-toluic acid	CH ₃ C ₆ H ₄ CO ₂ H	S	136.15	103-105			Probable irritant
p- or 4-toluic acid	CH ₃ C ₆ H ₄ CO ₂ H	S	136.15	180-182			Probable irritant
triethylphosphite	$(C_2H_5O)_3P$	L	166.16	156	0.969	1.4130	Moist. sens., irritant
triphenylmethanol	$(C_6H_5)_3C(OH)$	S	260.34	160-163			Probable irritant
urea	NH ₂ CONH ₂	S	60.06	135	1.335		Irritant
(-) usnic acid	$C_{18}H_{16}O_{7}$	S	344.32	198			Toxic
(+) usnic acid	$C_{18}H_{16}O_{7}$	S	344.32	201-203			Toxic
water	H_2O	L	18.02	100		1.33	Will burn skin when hot
water, ice	H ₂ O	S/L	18.02	0	1.00		Frostbite, hypothermia
xylenes	CH ₃ C ₆ H ₄ CH ₃	L	106.17	137-144	0.860	1.4970	Flammable, irritant
zinc dust	Zn	S	65.37	419.5			Flammable, moist.sens.

^{*}Be sure to consult the chemical's MSDS for more specific detail on hazardous properties.

CHEM350 2006-08 Prelab Questions

CHEM350 Prelab Questions (Feb. 2006)

Exp.1 Prelab Question Answers:

Q1-b; Q2-c; Q3-a; Q4-b; Q5-c; Q6-d; Q7-a; Q8-a; Q9-c; Q10-d

Exp.2 Prelab Question Answers:

Q1-d; Q2-b; Q3-a; Q4-d; Q5-c; Q6-c; Q7-b; Q8-a; Q9-d; Q10-c; Q11-a

Exp.3 Prelab Question Answers:

Q1-b; Q2-b; Q3-a; Q4-d; Q5-c; Q6-b; Q7-e; Q8-c

Exp.4 Prelab Question Answers:

Q1-a; Q2-c; Q3-a; Q4-a; Q5-a; Q6-a

Exp.5 Prelab Question Answers:

Q1-c; Q2-b; Q3-a; Q4-b; Q5-b; Q6-c; Q7-c; Q8-d

Exp.6 Prelab Question Answers:

Q1-d; Q2-c; Q3-d; Q4-d; Q5-b; Q6-a; Q7-b

Exp.7 Prelab Question Answers:

Q1-e; Q2-a; Q3-b; Q4-b; Q5-a; Q6-c

Exp.8 Prelab Question Answers:

Q1-a; Q2-b; Q3-b; Q4-c; Q5-b; Q6-e; Q7-a; Q8-b; Q9-d

Exp.8 Alternate Prelab Question Answers:

Q1-a; Q2-b; Q3-c; Q4-b; Q5-e; Q6-a; Q7-b; Q8-c

Exp.9 Prelab Question Answers:

Q1-c; Q2-b; Q3-d; Q4-c; Q5-b; Q6-c; Q7-b; Q8-d