## Math 101

## NOTES ON TRANSFORMATIONS OF FUNCTIONS

Here is a compendium of the various transformations of functions that are covered in Math 101 with some additional explanations on horizontal shifts, stretches and contractions.

## RIGID TRANSFORMATIONS

## Vertical and Horizontal Shifts:

Suppose $\mathrm{c}>0$. (Note that c must be a positive number.)
Suppose we know what the graph of a function $y=f(x)$ looks like.
To obtain the graph of:
$y=g(x)=f(x)+c, \quad$ shift the graph of $y=f(x)$, $c$ units upward (up the $y-a x i s)$.
$y=g(x)=f(x)-c, \quad$ shift the graph of $y=f(x)$, c units downward (down the $y$-axis).
$y=g(x)=f(x+c), \quad$ shift the graph of $y=f(x), c$ units to the left (left along the $x$-axis).
$y=g(x)=f(x-c), \quad$ shift the graph of $y=f(x), c$ units to the right (right along the $x$-axis).

## Reflections across an Axis:

To obtain the graph of:
$y=g(x)=-f(x), \quad$ reflect the graph of $y=f(x)$ equidistantly across the $x$-axis.
$y=g(x)=f(-x), \quad$ reflect the graph of $y=f(x)$ equidistantly across the $y$-axis.

## NON-RIGID TRANSFORMATIONS

## Vertical Stretches and Compressions:

Suppose $\mathrm{c}>1$. (Note that c must be a positive number larger than 1.)
Suppose we know what the graph of a function $y=f(x)$ looks like.
To obtain the graph of:
$y=g(x)=c f(x), \quad$ stretch the graph of $y=f(x)$ vertically by a factor of $c$.
$y=g(x)=(1 / c) f(x)$, compress the graph of $y=f(x)$ vertically by a factor of $c$.
NOTE THAT: VERTICAL compression and stretching occurs with respect to the distance of the point from the x -axis. Points of the original f graph on the x -axis remain fixed in this process.

## Horizontal Stretches and Compressions:

Suppose $\mathrm{c}>1$. (Note that c must be a positive number larger than 1.)
Suppose we know what the graph of a function $y=f(x)$ looks like.
To obtain the graph of:
$y=g(x)=f(c x), \quad$ compress the graph of $y=f(x)$ horizontally by a factor of $c$.
$y=g(x)=f(x / c), \quad$ stretch the graph of $y=f(x)$ horizontally by a factor of $c$.
NOTE THAT: HORIZONTAL compression and stretching occurs with respect to the distance of the point from the $y$-axis. Points of the original f graph on the $y$-axis remain fixed in this process.

Let us consider four cases in more detail:

## CASE 1: Horizontal Compression

To obtain the graph of
$y=f(c x)$ where $c>1$, compress (shrink) the graph of $y=f(x)$ horizontally by a factor of $c$, keeping the points (if any) on the $y$-axis fixed.

WHY?
Consider the following example:
Let f be the function defined as $\mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ with domain equal to the interval $(-3,1]$.
Let $\mathrm{c}=2>1$.
Now the graph of $y=x^{2}$ is a parabola opening upward with vertex at the origin.
Since the domain of $f$ is all numbers $x$ such that $-3<x \leq 1$, this means that f is only defined for numbers between -3 and 1 , excluding -3 but including 1 .

Therefore, the graph of f is that part of the parabola defined over the interval $-3<\mathrm{x} \leq 1$. (See the diagram at the bottom of page 3.)

If $c=2$, then $c x=2 x$.
Therefore, to find the graph of $\mathrm{g}(\mathrm{x})=\mathrm{f}(2 \mathrm{x})=(2 \mathrm{x})^{2}, 2 \mathrm{x}$ must belong to the domain of f . In other words, $-3<2 x \leq 1$ or $-3 / 2<x \leq 1 / 2$ is the domain of $g(x)=f(2 x)$.
(Observe that the domain of $g$ is simply the domain of $f$ shrunk by a factor of 2.)
This means that the graph is now fully reproduced over the $x$-values $-3 / 2<x \leq 1 / 2$.
It has been compressed along the x -axis (horizontally) by a factor of 2 .
If you draw it, you will notice that the graph of $f(2 x)=(2 x)^{2}=4 x^{2}$ is simply a parabola looking like a horizontally compressed version of the graph of $f$, but the transformed parabola still has vertex at the origin. This shows that the points on the $y$-axis of the original graph remained fixed in the compression process.

## CASE 2: Horizontal Stretching

To obtain the graph of
$y=f(x / c)$ where $c>1$, stretch the graph of $y=f(x)$ horizontally by a factor of $c$, keeping the points (if any) on the $y$-axis fixed.

WHY?
Let f be the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ with domain $(-3,1]$, and let $\mathrm{c}=2>1$.
Using an argument similar to the previous example, we know that the graph of $y=x^{2}$ is a parabola opening upward with vertex at the origin, and the graph of $f$ is that part of the parabola which is defined over the interval $-3<x \leq 1$.

If $\mathrm{c}=2$, then $\mathrm{x} / \mathrm{c}=\mathrm{x} / 2$.
Therefore, to find the graph of $\mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{x} / 2)=(\mathrm{x} / 2)^{2}, \mathrm{x} / 2$ must belong to the domain of the function $f$. This means that $-3<x / 2 \leq 1$ or $-6<x \leq 2$ is the domain of $h(x)=f(x / 2)$. (Observe that the domain of $h$ is simply the domain of $f$ stretched by a factor of 2.)

This means that the graph is now fully reproduced over the $x$-values $-6<x \leq 2$. It has been stretched along the x -axis (horizontally) by a factor of 2 .

If you draw it, you will notice that the graph of $h(x)=f(x / 2)=(x / 2)^{2}=x^{2} / 4$ is also a parabola looking like a horizontally stretched version of the graph of $f$, but the transformed parabola still has vertex at the origin. This shows that the points on the y-axis of the original graph remained fixed in the stretching process. (See the diagram below.)


Note that the ranges of all three functions are the same interval $[0,9)$.

## CASE 3: Horizontal Translation to the Right

To obtain the graph of
$y=f(x-c)$, where $c>0$, translate the graph of $y=f(x)$ horizontally to the right by $c$ units.
WHY?
Consider the same function as in the previous two cases where $f(x)=x^{2}$ with domain $(-3,1]$.
Let $\mathrm{c}=3>0$.
If $\mathrm{c}=3$, then $\mathrm{x}-\mathrm{c}=\mathrm{x}-3$.
Therefore, to find the graph of $k(x)=f(x-3)=(x-3)^{2}, x-3$ must belong to the domain of $f$. In other words, $\quad-3<x-3 \leq 1$ or $0<x \leq 4$. (This latter interval is the domain of the function $\mathrm{k}(\mathrm{x})=\mathrm{f}(\mathrm{x}-3)$ and is the domain of f shifted to the right by 3 units.)

This means that the graph is now fully reproduced over the $x$-values $0<x \leq 4$. It has been translated horizontally along the x -axis to the right by 3 units. (See the diagram below.)

## CASE 3: Horizontal Translation to the Left

To obtain the graph of $y=f(x+c)$, where $c>0$, translate the graph of $y=f(x)$ horizontally to the left by $c$ units.

Similarly, to find the graph of $m(x)=f(x+3)=(x+3)^{2}, x+3$ must belong to the domain of $f$. This means that $-3<x+3 \leq 1$ or $-6<x \leq-2$. (This latter interval is the domain of the function $m(x)=f(x+3)$ and is the domain of $f$ shifted to the left by 3 units.)

Thus the graph of $m(x)=f(x+3)=(x+3)^{2}$ is the same as the graph of $f$ translated horizontally along the x -axis to the left by 3 units. (See the diagram below.)


Note that the ranges of all three functions are the same interval $[0,9)$.

