Math 101

THE FACTOR THEOREM

Taking a Closer Look at the Factor Theorem

Recall from page 100 of the Study Guide, Unit 3:

The **Factor Theorem** states the following:

For a polynomial P of degree n (a positive non-zero integer), P(a) = 0 where a is any real number if and only if (x - a) is a factor of P(x).

**Note that: (x - a) is a factor of P(x) is another way of saying P(x) is divisible by (x - a).

The "if and only if" implication means that it works both ways.

The "if" implication: **IF** P(a) = 0, where a is any real number, **THEN** (x - a) is a factor of P(x). (the first statement implies the second statement)

AND

The "only if" implication: IF (x - a) is a factor of P(x), where a is any real number, THEN P(a) = 0. (the second statement implies the first statement)

Examples of Using the Factor Theorem

Suppose $P(x) = x^4 - x^2$. Then P is a polynomial of degree 4. In this case, n = 4 > 0.

The "if" implication:

Observe that $P(0) = 0^4 - 0^2 = 0$. By the Factor Theorem, we can say that (x - 0) or simply x is a factor of $P(x) = x^4 - x^2$.

Observe that $P(-1) = (-1)^4 - (-1)^2 = 1 - 1 = 0$. By the Factor Theorem, we can say that (x - (-1)) or simply (x + 1) is a factor of $P(x) = x^4 - x^2$.

The "only if" implication:

If we factor $P(x) = x^4 - x^2$, we get $P(x) = x^4 - x^2 = x^2 (x^2 - 1) = x^2 (x - 1)(x + 1)$. By the Factor Theorem, we can deduce that since x = (x - 0),and (x+1) = (x - (-1)) are all factors of P(x), then (x - 1),P(0) = 0: P(1) = 0: and P(-1) = 0

- which is evident in this case but not necessarily in all cases.

Special Cases of the Factor Theorem

See page 103 of the Study Guide, Unit 3.

1. Let $f(x) = x^n - a^n$ where *n* is a positive non-zero integer and *a* is any real number. Then (x-a) is a factor of f(x).

Simply observe that $f(x) = x^n - a^n$ is a special kind of polynomial of degree *n*. Since $f(a) = a^n - a^n = 0$, by the "if" implication of the Factor Theorem, we can deduce that (x - a) is a factor of f(x).

2. Let $f(x) = x^n + a^n$ where *n* is an ODD positive integer and *a* is any real number. Then (x + a) is a factor of f(x).

Again $f(x) = x^n + a^n$ is a special kind of polynomial of degree *n*. Since $f(-a) = (-a)^n + a^n = -a + a = 0$ (Here we have used the fact that *n* is an ODD positive integer), by the "if" implication of the Factor Theorem, we can deduce that (x - (-a)) = (x + a) is a factor of f(x).

Examples Using the Special Cases of the Factor Theorem

Example 1:

Determine whether the number $5^6 - 8$ is a prime number by using the Factor Theorem.

Solution:

Recall that a number p is a prime number if and only if its only factors are \pm itself or ± 1 .

We observe that the number $5^6 - 8 = (5^2)^3 - 2^3$ has the form $f(x) = x^n - a^n$ where $x = 5^2$, a = 2, and n = 3.

Now we apply the first special case of the Factor Theorem (listed above) to the polynomial $f(x) = x^3 - 2^3$.

We deduce that (x - 2) is a factor of $x^3 - 2^3$.

Returning to our number, we recall that $x = 5^2$. Therefore $(x - 2) = 5^2 - 2 = 23$ is a factor of $x^3 - 2^3 = (5^2)^3 - 2^3 = 5^6 - 8$. Since $23 \neq \pm 1$ and $23 \neq \pm (5^6 - 8)$, we conclude that $5^6 - 8$ is not a prime number.

Example 2:

Given: $5^p - 1$, where *p* is an even number (a positive integer divisible by 2). Prove: that $5^p - 1$ is also an even number.

HINT:

As p is representative of any even number, the proof must involve a general application of the Factor Theorem.

Solution:

Since the number *p* is divisible by 2, 2 is a factor of *p*, implying that $p = 2 \cdot n$ for some positive integer *n*.

 $5^{p} - 1$ can then be rewritten as: $5^{p} - 1 = 5^{2 \cdot n} - 1 = (5^{2})^{n} - 1 = (5^{2})^{n} - 1^{n}$ and has the form $f(x) = x^{n} - a^{n}$ where $x = 5^{2}$ and a = 1.

(Here we used the fact that $1 = 1^{n}$ for any positive integer *n*.)

If we apply the first special case of the Factor Theorem to the polynomial $f(x) = x^n - a^n$,

we may deduce that (x - a) is a factor of $x^n - a^n$ OR $(5^2 - 1)$ is a factor of $(5^2)^n - 1^n = 5^p - 1$, showing that 24 is a factor of $5^p - 1$.

If 24 is a factor of $5^p - 1$, then 2 is also a factor of $5^p - 1$. Thus $5^p - 1$ is an even number. q.e.d. (Latin abbreviation for 'has been proved')

Example 3:

Factor $f(x) = x^5 + 32$ into two factors.

Solution:

Observe that $f(x) = x^5 + 32 = x^5 + 2^5$. Here a = 2 and n = 5 (an ODD positive integer).

Applying the second special case of the Factor Theorem to the polynomial $f(x) = x^5 + 2^5$, we deduce that (x + 2) is a factor of f(x).

We now divide (x + 2) into $(x^5 + 32)$ using polynomial division.

$$\begin{array}{r} x^{4} - 2 \cdot x^{3} + 4 \cdot x^{2} - 8 \cdot x + 16 \\ x + 2 \mid \overline{x^{5} + 0 \cdot x^{4} + 0 \cdot x^{3} + 0 \cdot x^{2} + 0 \cdot x + 32} \\ \underline{x^{5} + 2 \cdot x^{4}} \\ - 2 \cdot x^{4} + 0 \cdot x^{3} \\ - 2 \cdot x^{4} - 4 \cdot x^{3} \\ + 4 \cdot x^{3} + 0 \cdot x^{2} \\ + 4 \cdot x^{3} + 8 \cdot x^{2} \\ - 8 \cdot x^{2} + 0 \cdot x \\ \underline{-8 \cdot x^{2} - 16 \cdot x} \\ + 16 \cdot x + 32 \\ \underline{+16 \cdot x + 32} \\ 0 \end{array}$$

Therefore, $f(x) = x^5 + 32 = (x+2) \cdot (x^4 - 2 \cdot x^3 + 4 \cdot x^2 - 8 \cdot x + 16).$